The classical KAM theorem for Hamiltonian systems via rational approximations
Fischler, Stephane; Bounemoura, Abed (2014), The classical KAM theorem for Hamiltonian systems via rational approximations, Regular and Chaotic Dynamics, 19, 2, p. 251-265. http://dx.doi.org/10.1134/S1560354714020087
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00937185Date
2014Journal name
Regular and Chaotic DynamicsVolume
19Number
2Publisher
Springer
Pages
251-265
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper, we give a new proof of the classical KAM theorem on the persistence of an invariant quasi-periodic torus, whose frequency vector satisfies the Bruno-Rüssmann condition, in real-analytic non-degenerate Hamiltonian systems close to integrable. The proof, which uses rational approximations instead of small divisors estimates, is an adaptation to the Hamiltonian setting of the method we introduced in a previous work for perturbations of constant vector fields on the torus.Subjects / Keywords
Hamiltonian systems; KAM theoremRelated items
Showing items related by title and author.
-
Bounemoura, Abed (2020) Document de travail / Working paper
-
Bounemoura, Abed (2020) Article accepté pour publication ou publié
-
Bounemoura, Abed; Kaloshin, Vadim (2016) Article accepté pour publication ou publié
-
Bounemoura, Abed (2014) Article accepté pour publication ou publié
-
Bounemoura, Abed; Féjoz, Jacques (2017-06) Article accepté pour publication ou publié