dc.contributor.author | Fischler, Stephane | |
dc.contributor.author | Bounemoura, Abed | |
dc.date.accessioned | 2014-02-24T09:17:50Z | |
dc.date.available | 2014-02-24T09:17:50Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/12736 | |
dc.language.iso | en | en |
dc.subject | Hamiltonian systems | en |
dc.subject | KAM theorem | en |
dc.subject.ddc | 520 | en |
dc.title | The classical KAM theorem for Hamiltonian systems via rational approximations | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper, we give a new proof of the classical KAM theorem on the persistence of an invariant quasi-periodic torus, whose frequency vector satisfies the Bruno-Rüssmann condition, in real-analytic non-degenerate Hamiltonian systems close to integrable. The proof, which uses rational approximations instead of small divisors estimates, is an adaptation to the Hamiltonian setting of the method we introduced in a previous work for perturbations of constant vector fields on the torus. | en |
dc.relation.isversionofjnlname | Regular and Chaotic Dynamics | |
dc.relation.isversionofjnlvol | 19 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2014 | |
dc.relation.isversionofjnlpages | 251-265 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1134/S1560354714020087 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00937185 | en |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Sciences connexes (physique, astrophysique) | en |
dc.description.submitted | non | en |
dc.relation.Isversionofjnlpeerreviewed | Springer | |