Show simple item record

dc.contributor.authorFischler, Stephane
dc.contributor.authorBounemoura, Abed
dc.date.accessioned2014-02-24T09:17:50Z
dc.date.available2014-02-24T09:17:50Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/12736
dc.language.isoenen
dc.subjectHamiltonian systemsen
dc.subjectKAM theoremen
dc.subject.ddc520en
dc.titleThe classical KAM theorem for Hamiltonian systems via rational approximationsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we give a new proof of the classical KAM theorem on the persistence of an invariant quasi-periodic torus, whose frequency vector satisfies the Bruno-Rüssmann condition, in real-analytic non-degenerate Hamiltonian systems close to integrable. The proof, which uses rational approximations instead of small divisors estimates, is an adaptation to the Hamiltonian setting of the method we introduced in a previous work for perturbations of constant vector fields on the torus.en
dc.relation.isversionofjnlnameRegular and Chaotic Dynamics
dc.relation.isversionofjnlvol19
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2014
dc.relation.isversionofjnlpages251-265
dc.relation.isversionofdoihttp://dx.doi.org/10.1134/S1560354714020087
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00937185en
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.description.submittednonen
dc.relation.IsversionofjnlpeerreviewedSpringer


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record