• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Spectrum of Markov generators on sparse random graphs

Chafaï, Djalil; Caputo, Pietro; Bordenave, Charles (2014), Spectrum of Markov generators on sparse random graphs, Communications on Pure and Applied Mathematics, 67, 4, p. 621-669. http://dx.doi.org/10.1002/cpa.21496

Voir/Ouvrir
cirgen.pdf (1.503Mb)
Type
Article accepté pour publication ou publié
Date
2014
Nom de la revue
Communications on Pure and Applied Mathematics
Volume
67
Numéro
4
Éditeur
Wiley-Blackwell
Pages
621-669
Identifiant publication
http://dx.doi.org/10.1002/cpa.21496
Métadonnées
Afficher la notice complète
Auteur(s)
Chafaï, Djalil cc
Caputo, Pietro
Bordenave, Charles
Résumé (EN)
We investigate the spectrum of the infinitesimal generator of the continuous time random walk on a randomly weighted oriented graph. This is the non-Hermitian random nxn matrix L defined by L(j,k)=X(j,k) if k<>j and L(j,j)=-sum(L(j,k),k<>j), where X(j,k) are i.i.d. random weights. Under mild assumptions on the law of the weights, we establish convergence as n tends to infinity of the empirical spectral distribution of L after centering and rescaling. In particular, our assumptions include sparse random graphs such as the oriented Erdős-Rényi graph where each edge is present independently with probability p(n)->0 as long as np(n) >> (log(n))^6. The limiting distribution is characterized as an additive Gaussian deformation of the standard circular law. In free probability terms, this coincides with the Brown measure of the free sum of the circular element and a normal operator with Gaussian spectral measure. The density of the limiting distribution is analyzed using a subordination formula. Furthermore, we study the convergence of the invariant measure of L to the uniform distribution and establish estimates on the extremal eigenvalues of L.
Mots-clés
Spectral Analysis; Combinatorics; Free probability; Random matrices; Random graphs

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph 
    Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil; Piras, Daniele (2017) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    On the spectral radius of a random matrix: An upper bound without fourth moment 
    Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil; Tikhomirov, Konstantin (2018) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Convergence of the spectral radius of a random matrix through its characteristic polynomial 
    Bordenave, Charles; Chafaï, Djalil; García-Zelada, David (2021) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Emergence of extended states at zero in the spectrum of sparse random graphs 
    Coste, Simon; Salez, Justin (2021) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Monotonicity of the logarithmic energy for random matrices 
    Chafai, Djalil; Dadoun, Benjamin; Youssef, Pierre (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo