• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Functional versions of Lp-affine surface area and entropy inequalities

Caglar, Umut; Fradelizi, Matthieu; Guédon, Olivier; Lehec, Joseph; Schütt, Carsten; Werner, Elisabeth (2016), Functional versions of Lp-affine surface area and entropy inequalities, International Mathematics Research Notices, 2016, 4, p. 1223-1250. 10.1093/imrn/rnv151

Type
Article accepté pour publication ou publié
Date
2016
Journal name
International Mathematics Research Notices
Volume
2016
Number
4
Publisher
Duke University Press
Published in
Paris
Pages
1223-1250
Publication identifier
10.1093/imrn/rnv151
Metadata
Show full item record
Author(s)
Caglar, Umut
Fradelizi, Matthieu
Guédon, Olivier
Lehec, Joseph cc
Schütt, Carsten
Werner, Elisabeth
Abstract (EN)
In contemporary convex geometry, the rapidly developing Lp-Brunn Minkowskitheory is a modern analogue of the classical Brunn Minkowski theory. A cornerstoneof this theory is the Lp-affine surface area for convex bodies. Here, we introducea functional form of this concept, for log concave and s-concave functions. Weshow that the new functional form is a generalization of the original Lp-affinesurface area. We prove duality relations and affine isoperimetric inequalities for logconcave and s-concave functions. This leads to a new inverse log-Sobolevinequality for s-concave densities
Subjects / Keywords
affine isoperimetric inequalities; entropy; log- Sobolev inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Representation formula for the entropy and functional inequalities 
    Lehec, Joseph (2013) Article accepté pour publication ou publié
  • Thumbnail
    Transport-entropy inequalities and curvature in discrete-space Markov chains 
    Eldan, Ronen; Lee, James; Lehec, Joseph (2017) Chapitre d'ouvrage
  • Thumbnail
    On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures 
    Chafaï, Djalil; Lehec, Joseph (2020) Chapitre d'ouvrage
  • Thumbnail
    Some recent developments in functional inequalities 
    Schlichting, André; Menz, Georg; Léonard, Christian; Lehec, Joseph; Gozlan, Nathael; Boissard, Emmanuel (2014) Communication / Conférence
  • Thumbnail
    Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results 
    Dolbeault, Jean (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo