Superdiffusion of Energy in a Chain of Harmonic Oscillators with Noise
Jara, Milton; Komorowski, Tomasz; Olla, Stefano (2015), Superdiffusion of Energy in a Chain of Harmonic Oscillators with Noise, Communications in Mathematical Physics, 339, 2, p. 407-453. 10.1007/s00220-015-2417-6
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1402.2988v3Date
2015Journal name
Communications in Mathematical PhysicsVolume
339Number
2Publisher
Springer
Published in
Paris
Pages
407-453
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is perturbed by a stochastic term conserving energy and momentum. We prove that in the unpinned case the macroscopic evolution of the energy converges to the solution of the fractional diffusion equation ∂tu=−|Δ|3/4u. For a pinned system we prove that its energy evolves diffusively, generalizing some results of Basile and Olla (J. Stat. Phys. 155(6):1126–1142, 2014).Subjects / Keywords
Thermal conductivity; fractionnal diffusion; harmonic oscillatorsRelated items
Showing items related by title and author.
-
Olla, Stefano; Simon, Marielle; Komorowski, Tomasz (2018) Article accepté pour publication ou publié
-
Basile, Giada; Bernardin, Cédric; Jara, Milton; Komorowski, Tomasz; Olla, Stefano (2016) Chapitre d'ouvrage
-
Komorowski, Tomasz; Olla, Stefano; Ryzhik, Lenya; Spohn, Herbert (2020) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Olla, Stefano (2020) Article accepté pour publication ou publié
-
Olla, Stefano; Komorowski, Tomasz; Jara, Milton (2009) Article accepté pour publication ou publié