Show simple item record

dc.contributor.authorChiarini, Alessandro
dc.contributor.authorCodreanu, Valeriu
dc.contributor.authorDong, Feng
dc.contributor.authorYang, Po
dc.contributor.authorWilliams, David
dc.contributor.authorClapworthy, Gordon J.
dc.contributor.authorRoerdink, Jos B.T.M.
dc.contributor.authorTelea, Alexandru C.
dc.contributor.authorLiu, Baoquan
dc.subjectVirtual endoscopyen
dc.subjectGPU techniquesen
dc.subjectParallel algorithmen
dc.titleParallel centerline extraction on the GPUen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherEindhoven University of Technology;Pays-Bas
dc.contributor.editoruniversityotherUniversity of Groningen;Pays-Bas
dc.contributor.editoruniversityotherDepartment of Computer Science and Technology, University of Bedfordshire;Royaume-Uni
dc.description.abstractenCenterline extraction is important in a variety of visualization applications including shape analysis, geometry processing, and virtual endoscopy. Centerlines allow accurate measurements of length along winding tubular structures, assist automatic virtual navigation, and provide a path-planning system to control the movement and orientation of a virtual camera. However, efficiently computing centerlines with the desired accuracy has been a major challenge. Existing centerline methods are either not fast enough or not accurate enough for interactive application to complex 3D shapes. Some methods based on distance mapping are accurate, but these are sequential algorithms which have limited performance when running on the CPU. To our knowledge, there is no accurate parallel centerline algorithm that can take advantage of modern many-core parallel computing resources, such as GPUs, to perform automatic centerline extraction from large data volumes at interactive speed and with high accuracy. In this paper, we present a new parallel centerline extraction algorithm suitable for implementation on a GPU to produce highly accurate, 26-connected, one-voxel-thick centerlines at interactive speed. The resulting centerlines are as accurate as those produced by a state-of-the-art sequential CPU method [40], while being computed hundreds of times faster. Applications to fly through path planning and virtual endoscopy are discussed. Experimental results demonstrating centeredness, robustness and efficiency are presented.en
dc.relation.isversionofjnlnameComputers & Graphics
dc.subject.ddclabelIntelligence artificielleen

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record