• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Optimal Control of Trading Algorithms: A General Impulse Control Approach

Bouchard, Bruno; Dang, Ngoc Minh; Lehalle, Charles-Albert (2011), Optimal Control of Trading Algorithms: A General Impulse Control Approach, SIAM Journal on Financial Mathematics, 2, 1, p. 404-438. http://dx.doi.org/10.1137/090777293

Type
Article accepté pour publication ou publié
Date
2011
Journal name
SIAM Journal on Financial Mathematics
Volume
2
Number
1
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
404-438
Publication identifier
http://dx.doi.org/10.1137/090777293
Metadata
Show full item record
Author(s)
Bouchard, Bruno
Dang, Ngoc Minh
Lehalle, Charles-Albert cc
Abstract (EN)
We propose a general framework for intraday trading based on the control of trading algorithms. Given a set of generic parameterized algorithms (which have to be specified by the controller ex-ante), our aim is to optimize the dates $(\tau_i)_i$ at which they are launched, the length $(\delta_i)_i$ of the trading period, and the value of the parameters $({\cal E}_i)_i$ kept during the time interval $[\tau_i,\tau_i + \delta_i)$. This provides the financial agent a decision tool for selecting which algorithm (and for which set of parameters and time length) should be used in the different phases of the trading period. From the mathematical point of view, this gives rise to a nonclassical impulse control problem where not only the regime ${\cal E}_i$ but also the period $[\tau_i,\tau_i+ \delta_i)$ have to be determined by the controller at the impulse time $\tau_i$. We adapt the weak dynamic programming principle of Bouchard and Touzi [SIAM J. Control Optim., 49 (2011), pp. 948–962] to our context to provide a characterization of the associated value function as a discontinuous viscosity solution of a system of partial differential equations with appropriate boundary conditions, for which we prove a comparison principle. We also propose a numerical scheme for the resolution of the above system and show that it is convergent. We finally provide a simple example of application to a problem of optimal stock trading with a nonlinear market impact function. This shows how parameters adapt to the market.
Subjects / Keywords
intra-day trading; optimal impulse control; discontinuous viscosity solutions

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal control of trading algorithms: a general impulse control approach 
    Dang, Ngoc Minh; Lehalle, Charles-Albert; Bouchard, Bruno (2010) Communication / Conférence
  • Thumbnail
    Optimal trading with online parameters revisions 
    Baradel, Nicolas; Bouchard, Bruno; Dang, Ngoc Minh (2016) Article accepté pour publication ou publié
  • Thumbnail
    Optimal Control versus Stochastic Target problems: An Equivalence Result 
    Bouchard, Bruno; Dang, Ngoc Minh (2012) Article accepté pour publication ou publié
  • Thumbnail
    Optimal Control Under Uncertainty and Bayesian Parameters Adjustments 
    Baradel, Nicolas; Bouchard, Bruno; Dang, Ngoc Minh (2018) Article accepté pour publication ou publié
  • Thumbnail
    Generalized stochastic target problems for pricing and partial hedging under loss constraints - Application in optimal book liquidation 
    Bouchard, Bruno; Dang, Ngoc Minh (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo