• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fast diffusion flow on manifolds of nonpositive curvature

Bonforte, Matteo; Grillo, Gabriele; Vazquez, Juan-Luis (2008), Fast diffusion flow on manifolds of nonpositive curvature, Journal of Evolution Equations, 8, 1, p. 99-128. http://dx.doi.org/10.1007/s00028-007-0345-4

View/Open
FDEManif-BGV.pdf (273.0Kb)
Type
Article accepté pour publication ou publié
Date
2008
Journal name
Journal of Evolution Equations
Volume
8
Number
1
Publisher
Springer
Pages
99-128
Publication identifier
http://dx.doi.org/10.1007/s00028-007-0345-4
Metadata
Show full item record
Author(s)
Bonforte, Matteo

Grillo, Gabriele

Vazquez, Juan-Luis
Abstract (EN)
We consider the fast diffusion equation (FDE) u t = Δu m (0 < m < 1) on a nonparabolic Riemannian manifold M. Existence of weak solutions holds. Then we show that the validity of Euclidean–type Sobolev inequalities implies that certain L p −L q smoothing effects of the type ∥u(t)∥ q ≤ Ct −α ∥u 0∥γ p , the case q = ∞ being included. The converse holds if m is sufficiently close to one. We then consider the case in which the manifold has the addition gap property min σ(−Δ) > 0. In that case solutions vanish in finite time, and we estimate from below and from above the extinction time.
Subjects / Keywords
Nonlinear evolutions; singular parabolic equations; fast diffusion; Riemannian manifolds; asymptotics

Related items

Showing items related by title and author.

  • Thumbnail
    Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities 
    Vazquez, Juan-Luis; Grillo, Gabriele; Dolbeault, Jean; Bonforte, Matteo (2010) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotics of the fast diffusion equation via entropy estimates 
    Grillo, Gabriele; Vazquez, Juan-Luis; Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean (2009) Article accepté pour publication ou publié
  • Thumbnail
    Hardy-Poincaré inequalities and applications to nonlinear diffusions 
    Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean; Grillo, Gabriele; Vazquez, Juan-Luis (2007) Article accepté pour publication ou publié
  • Thumbnail
    Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods 
    Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
  • Thumbnail
    Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2023) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo