
Fast diffusion flow on manifolds of nonpositive curvature
Bonforte, Matteo; Grillo, Gabriele; Vazquez, Juan-Luis (2008), Fast diffusion flow on manifolds of nonpositive curvature, Journal of Evolution Equations, 8, 1, p. 99-128. http://dx.doi.org/10.1007/s00028-007-0345-4
View/ Open
Type
Article accepté pour publication ou publiéDate
2008Journal name
Journal of Evolution EquationsVolume
8Number
1Publisher
Springer
Pages
99-128
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider the fast diffusion equation (FDE) u t = Δu m (0 < m < 1) on a nonparabolic Riemannian manifold M. Existence of weak solutions holds. Then we show that the validity of Euclidean–type Sobolev inequalities implies that certain L p −L q smoothing effects of the type ∥u(t)∥ q ≤ Ct −α ∥u 0∥γ p , the case q = ∞ being included. The converse holds if m is sufficiently close to one. We then consider the case in which the manifold has the addition gap property min σ(−Δ) > 0. In that case solutions vanish in finite time, and we estimate from below and from above the extinction time.Subjects / Keywords
Nonlinear evolutions; singular parabolic equations; fast diffusion; Riemannian manifolds; asymptoticsRelated items
Showing items related by title and author.
-
Vazquez, Juan-Luis; Grillo, Gabriele; Dolbeault, Jean; Bonforte, Matteo (2010) Article accepté pour publication ou publié
-
Grillo, Gabriele; Vazquez, Juan-Luis; Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean (2009) Article accepté pour publication ou publié
-
Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean; Grillo, Gabriele; Vazquez, Juan-Luis (2007) Article accepté pour publication ou publié
-
Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
-
Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2023) Article accepté pour publication ou publié