hal.structure.identifier | | |
dc.contributor.author | Bonforte, Matteo | * |
hal.structure.identifier | | |
dc.contributor.author | Grillo, Gabriele | * |
hal.structure.identifier | | |
dc.contributor.author | Vazquez, Juan-Luis | * |
dc.date.accessioned | 2014-03-27T12:44:50Z | |
dc.date.available | 2014-03-27T12:44:50Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/12966 | |
dc.language.iso | en | en |
dc.subject | Nonlinear evolutions | en |
dc.subject | singular parabolic equations | en |
dc.subject | fast diffusion | en |
dc.subject | Riemannian manifolds | en |
dc.subject | asymptotics | en |
dc.subject.ddc | 515 | en |
dc.title | Fast diffusion flow on manifolds of nonpositive curvature | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We consider the fast diffusion equation (FDE) u t = Δu m (0 < m < 1) on a nonparabolic Riemannian manifold M. Existence of weak solutions holds. Then we show that the validity of Euclidean–type Sobolev inequalities implies that certain L p −L q smoothing effects of the type ∥u(t)∥ q ≤ Ct −α ∥u 0∥γ p , the case q = ∞ being included. The converse holds if m is sufficiently close to one. We then consider the case in which the manifold has the addition gap property min σ(−Δ) > 0. In that case solutions vanish in finite time, and we estimate from below and from above the extinction time. | en |
dc.relation.isversionofjnlname | Journal of Evolution Equations | |
dc.relation.isversionofjnlvol | 8 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2008 | |
dc.relation.isversionofjnlpages | 99-128 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00028-007-0345-4 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |