Show simple item record

hal.structure.identifier
dc.contributor.authorJara, Milton*
hal.structure.identifier
dc.contributor.authorLandim, Claudio
HAL ID: 18198
*
hal.structure.identifier
dc.contributor.authorTeixeira, Augusto*
dc.date.accessioned2014-04-01T12:22:50Z
dc.date.available2014-04-01T12:22:50Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13020
dc.language.isoenen
dc.subjecttrap modelen
dc.subject.ddc519en
dc.titleUniversality of trap models in the ergodic time scaleen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenConsider a sequence of possibly random graphs GN=(VN,EN), N≥1, whose vertices's have i.i.d. weights {WNx:x∈VN} with a distribution belonging to the basin of attraction of an α-stable law, 0<α<1. Let XNt, t≥0, be a continuous time simple random walk on GN which waits a \emph{mean} WNx exponential time at each vertex x. Under considerably general hypotheses, we prove that in the ergodic time scale this trap model converges in an appropriate topology to a K-process. We apply this result to a class of graphs which includes the hypercube, the d-dimensional torus, d≥2, random d-regular graphs and the largest component of super-critical Erd\"os-R\'enyi random graphs.en
dc.relation.isversionofjnlnameAnnals of Probability
dc.relation.isversionofjnlvol42
dc.relation.isversionofjnlissue6
dc.relation.isversionofjnldate2014
dc.relation.isversionofjnlpages2497-2557
dc.identifier.urlsitehttp://arxiv.org/abs/1208.5675v1en
dc.relation.isversionofjnlpublisherIMSen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingprintnonen
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record