• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Local stability of perfect alignment for a spatially homogeneous kinetic model

Raoul, Gaël; Frouvelle, Amic; Degond, Pierre (2014), Local stability of perfect alignment for a spatially homogeneous kinetic model, Journal of Statistical Physics, 157, 1, p. 84-112. http://dx.doi.org/10.1007/s10955-014-1062-3

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00962234
Date
2014
Journal name
Journal of Statistical Physics
Volume
157
Number
1
Publisher
Springer
Pages
84-112
Publication identifier
http://dx.doi.org/10.1007/s10955-014-1062-3
Metadata
Show full item record
Author(s)
Raoul, Gaël cc
Frouvelle, Amic cc
Degond, Pierre
Abstract (EN)
We prove the nonlinear local stability of Dirac masses for a kinetic model of alignment of particles on the unit sphere, each point of the unit sphere representing a direction. A population concentrated in a Dirac mass then corresponds to the global alignment of all individuals. The main difficulty of this model is the lack of conserved quantities and the absence of an energy that would decrease for any initial condition. We overcome this difficulty thanks to a functional which is decreasing in time in a neighborhood of any Dirac mass (in the sense of the Wasserstein distance). The results are then extended to the case where the unit sphere is replaced by a general Riemannian manifold.
Subjects / Keywords
comparison theorems; Riemannian manifold; unit sphere; Dirac mass; nonlinear stability; alignment of particles; kinetic equation

Related items

Showing items related by title and author.

  • Thumbnail
    From kinetic to fluid models of liquid crystals by the moment method 
    Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo (2021) Document de travail / Working paper
  • Thumbnail
    Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics 
    Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo (2015) Article accepté pour publication ou publié
  • Thumbnail
    Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations 
    Degond, Pierre; Frouvelle, Amic; Merino-Aceituno, Sara; Trescases, Ariane (2019) Communication / Conférence
  • Thumbnail
    Macroscopic models of collective motion and self-organization 
    Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo; Motsch, Sébastien; Navoret, Laurent (2013) Article accepté pour publication ou publié
  • Thumbnail
    Macroscopic models of collective motion and self-organization 
    Navoret, Laurent; Motsch, Sébastien; Liu, Jian-Guo; Frouvelle, Amic; Degond, Pierre (2013) Rapport
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo