Local stability of perfect alignment for a spatially homogeneous kinetic model
Raoul, Gaël; Frouvelle, Amic; Degond, Pierre (2014), Local stability of perfect alignment for a spatially homogeneous kinetic model, Journal of Statistical Physics, 157, 1, p. 84-112. http://dx.doi.org/10.1007/s10955-014-1062-3
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00962234Date
2014Journal name
Journal of Statistical PhysicsVolume
157Number
1Publisher
Springer
Pages
84-112
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove the nonlinear local stability of Dirac masses for a kinetic model of alignment of particles on the unit sphere, each point of the unit sphere representing a direction. A population concentrated in a Dirac mass then corresponds to the global alignment of all individuals. The main difficulty of this model is the lack of conserved quantities and the absence of an energy that would decrease for any initial condition. We overcome this difficulty thanks to a functional which is decreasing in time in a neighborhood of any Dirac mass (in the sense of the Wasserstein distance). The results are then extended to the case where the unit sphere is replaced by a general Riemannian manifold.Subjects / Keywords
comparison theorems; Riemannian manifold; unit sphere; Dirac mass; nonlinear stability; alignment of particles; kinetic equationRelated items
Showing items related by title and author.
-
Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo (2021) Document de travail / Working paper
-
Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo (2015) Article accepté pour publication ou publié
-
Degond, Pierre; Frouvelle, Amic; Merino-Aceituno, Sara; Trescases, Ariane (2019) Communication / Conférence
-
Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo; Motsch, Sébastien; Navoret, Laurent (2013) Article accepté pour publication ou publié
-
Navoret, Laurent; Motsch, Sébastien; Liu, Jian-Guo; Frouvelle, Amic; Degond, Pierre (2013) Rapport