Global optimal vaccination in the SIR model: Properties of the value function and application to cost-effectiveness analysis
Laguzet, Laetitia; Turinici, Gabriel (2015), Global optimal vaccination in the SIR model: Properties of the value function and application to cost-effectiveness analysis, Mathematical Biosciences, 263, p. 180-197. 10.1016/j.mbs.2015.03.002
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-00966622Date
2015Journal name
Mathematical BiosciencesVolume
263Publisher
Elsevier
Published in
Paris
Pages
180-197
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper focuses on optimal vaccination policies for a SIR model; the total cost of the disease is optimized with respect to the cost of a vaccination strategy. We show that the value function is the unique viscosity solution of a HJB equation. This allows to nd the global optimal vaccination policy. At odds with existing literature, it is seen that the value function is not always smooth (sometimes only Lipschitz) and the optimal vaccination policies are not unique. Moreover we rigorously analyze the situation when vaccination can be modeled as instantaneous (with respect to the time evolution of the epidemic) and identify the global optimum solutions.Subjects / Keywords
vaccination region; optimal vaccination; SIR model; immunization regionRelated items
Showing items related by title and author.
-
Laguzet, Laetitia; Turinici, Gabriel (2015) Article accepté pour publication ou publié
-
Ebong, Cliford E.; Lévy, Pierre (2011) Article accepté pour publication ou publié
-
Laguzet, Laetitia (2015-11) Thèse
-
Chouaid, Christos; Bensimon, Lionel; Clay, Emilie; Millier, Aurélie; Levy-Bachelot, Laurie; Huang, Min; Lévy, Pierre (2019) Article accepté pour publication ou publié
-
Kaucley, Landry; Lévy, Pierre (2015) Article accepté pour publication ou publié