Fractional Sobolev and Hardy-Littlewood-Sobolev inequalities
Nguyen, Van Hoang; Jankowiak, Gaspard (2014), Fractional Sobolev and Hardy-Littlewood-Sobolev inequalities. https://basepub.dauphine.fr/handle/123456789/13102
Type
Document de travail / Working paperExternal document link
http://hal.archives-ouvertes.fr/hal-00972035Date
2014Publisher
Université Paris-Dauphine
Published in
Paris
Pages
25
Metadata
Show full item recordAbstract (EN)
This work focuses on an improved fractional Sobolev inequality with a remainder term involving the \HLS{} inequality which has been proved recently. By extending a recent result on the standard Laplacian to the fractional case, we offer a new, simpler proof and provide new estimates on the best constant involved. Using endpoint differentiation, we also obtain an improved version of a Moser-Trudinger-Onofri type inequality on the sphere. As an immediate consequence, we derive an improved version of the Onofri inequality on the Euclidean space using the stereographic projection.Subjects / Keywords
pseudodifferential operators; nonlinear diffusion; stereographic projection; best constant; Hardy-Littlewood-Sobolev inequality; Fractional Sobolev inequalityRelated items
Showing items related by title and author.
-
Jankowiak, Gaspard; Dolbeault, Jean (2014) Article accepté pour publication ou publié
-
Dolbeault, Jean (2011-03) Article accepté pour publication ou publié
-
Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J. (2022) Chapitre d'ouvrage
-
Carillo, José A.; Delgadino, Matías; Dolbeault, Jean; Frank, Rupert L.; Hoffmann, Franca (2019) Article accepté pour publication ou publié