Optimal stopping for dynamic risk measures with jumps and obstacle problems
Dumitrescu, Roxana; Quenez, Marie-Claire; Sulem, Agnès (2015), Optimal stopping for dynamic risk measures with jumps and obstacle problems, Journal of Optimization Theory and Applications, 167, 1, p. 219-242. http://dx.doi.org/10.1007/s10957-014-0635-2
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1404.4600v2Date
2015Journal name
Journal of Optimization Theory and ApplicationsVolume
167Number
1Publisher
Plenum
Pages
219-242
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the optimal stopping problem for a monotonous dynamic risk measure induced by a BSDE with jumps in the Markovian case. We show that the value function is a viscosity solution of an obstacle problem for a partial integro-differential variational inequality, and we provide an uniqueness result for this obstacle problem.Subjects / Keywords
partial integro-differential variational inequality; Dynamic risk-measure; obstacle problem; optimal stopping; reflected backward stochastic differential equations with jumps; comparison principleRelated items
Showing items related by title and author.
-
Dumitrescu, Roxana; Quenez, Marie-Claire; Sulem, Agnès (2016) Article accepté pour publication ou publié
-
Sulem, Agnès; Quenez, Marie-Claire; Dumitrescu, Roxana (2013) Rapport
-
Dumitrescu, Roxana; Quenez, Marie-Claire; Sulem, Agnès (2016) Article accepté pour publication ou publié
-
Sulem, Agnès; Quenez, Marie-Claire; Dumitrescu, Roxana (2013) Rapport
-
Dumitrescu, Roxana; Grigorova, Miryana; Quenez, Marie-Claire; Sulem, Agnès (2016-12) Communication / Conférence