• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Random walk driven by simple exclusion process

Huveneers, François; Simenhaus, François (2015), Random walk driven by simple exclusion process, Electronic Journal of Probability, 20, p. 42 p.. 10.1214/EJP.v20-3906

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1404.4187v3
Date
2015
Journal name
Electronic Journal of Probability
Volume
20
Publisher
Electronic Journal of Probability and Electronic Communications in Probability
Published in
Paris
Pages
42 p.
Publication identifier
10.1214/EJP.v20-3906
Metadata
Show full item record
Author(s)
Huveneers, François
Simenhaus, François
Abstract (EN)
We prove strong law of large numbers and an annealed invariance principle for a random walk in a one-dimensional dynamic random environment evolving as the simple exclusion process with jump parameter γ. First we establish that, if the asymptotic velocity of the walker is non-zero in the limiting case "γ=∞" where the environment gets fully refreshed between each step, then, for γ large enough, the walker still has a non-zero asymptotic velocity in the same direction. Second we establish that if the walker is transient in the limiting case γ=0, then, for γ small enough but positive, the walker has a non-zero asymptotic velocity in the direction of the transience. These two limiting velocities can sometimes be of opposite sign. In all cases, we show that fluctuations are normal.
Subjects / Keywords
Random walk in dynamic random environment; limit theorem; renormalization; renewal times

Related items

Showing items related by title and author.

  • Thumbnail
    A limit theorem for the survival probability of a simple random walk among power-law renewal traps 
    Poisat, Julien; Simenhaus, François (2018) Document de travail / Working paper
  • Thumbnail
    A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles 
    Poisat, Julien; Simenhaus, François (2020) Article accepté pour publication ou publié
  • Thumbnail
    Localization of a one-dimensional simple random walk among power-law renewal obstacles 
    Poisat, Julien; Simenhaus, François (2022) Document de travail / Working paper
  • Thumbnail
    Random walk on a perturbation of the infinitely-fast mixing interchange process 
    Salvi, Michele; Simenhaus, François (2017) Document de travail / Working paper
  • Thumbnail
    Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process 
    Salvi, Michele; Simenhaus, François (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo