Show simple item record

dc.contributor.authorCarlier, Guillaume
dc.contributor.authorBlanchet, Adrien
dc.date.accessioned2014-04-28T14:42:23Z
dc.date.available2014-04-28T14:42:23Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13156
dc.language.isoenen
dc.subjectMonge-Kantorovich optimal transportation problemen
dc.subjectCournot-Nash equilibriaen
dc.subjectgames with a continuum of playersen
dc.subjectNash equilibriaen
dc.subject.ddc515en
dc.titleFrom Nash to Cournot-Nash equilibria via the Monge-Kantorovich problemen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherGroupe de recherche en économie mathématique et quantitative (GREMAQ) http://www-gremaq.univ-tlse1.fr/ CNRS : UMR5604 – Université des Sciences Sociales - Toulouse I – École des Hautes Études en Sciences Sociales (EHESS) – Institut national de la recherche agronomique (INRA) : UMR;France
dc.description.abstractenThe notion of Nash equilibria plays a key role in the analysis of strategic interactions in the framework of $N$ player games. Analysis of Nash equilibria is however a complex issue when the number of players is large. In this article we emphasize the role of optimal transport theory in: 1) the passage from Nash to Cournot-Nash equilibria as the number of players tends to infinity, 2) the analysis of Cournot-Nash equilibria.en
dc.relation.isversionofjnlnamePhilosophical Transactions. Physical, Mathematical and Engineering Sciences
dc.relation.isversionofjnlvol372
dc.relation.isversionofjnlissue2028
dc.relation.isversionofjnldate2014
dc.relation.isversionofjnlpagesn°20130398
dc.relation.isversionofdoihttp://dx.doi.org/10.1098/rsta.2013.0398
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00981500en
dc.relation.isversionofjnlpublisherRoyal Society Publishing
dc.subject.ddclabelAnalyseen
dc.description.submittednonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record