Cores of effectivity functions and implementation theory
Moulin, Hervé; Peleg, B. (1982), Cores of effectivity functions and implementation theory, Journal of Mathematical Economics, 10, 1, p. 115-145. http://dx.doi.org/10.1016/0304-4068(82)90009-X
Type
Article accepté pour publication ou publiéDate
1982Journal name
Journal of Mathematical EconomicsVolume
10Number
1Publisher
Elsevier
Pages
115-145
Publication identifier
Metadata
Show full item recordAbstract (EN)
In a committee where cooperative voting occurs, effectivity functions describe the blocking power of coalitions. It is a binary relation that says for each coalition T and each subset of outcomes B whether or not T can force the final outcome within B. The corresponding cooperative stability notion generalizes the familiar core of a simple game. We study those effectivity functions yielding a non-empty core for all preference profiles, of which additive effectivity functions are an example. This proves to be closely related to implementation by means of the strong equilibrium concept.Subjects / Keywords
cooperative gamesRelated items
Showing items related by title and author.
-
Moulin, Hervé (1982) Article accepté pour publication ou publié
-
Moulin, Hervé (1981) Article accepté pour publication ou publié
-
Rigaux, Philippe; Abrouk, Lylia; Audéon, Hervé; Cullot, Nadine; Davy-Rigaux, Cécile; Faget, Zoé (2012) Article accepté pour publication ou publié
-
Glevarec, Hervé; Cibois, Philippe (2020) Article accepté pour publication ou publié
-
Laslier, Jean-François; Moulin, Hervé; Sanver, Remzi; Zwicker, William (2019) Ouvrage