The Maximum Principle for an Optimal Solution to a Differential Inclusion with End Points Constraints
Frankowska, Halina (1987), The Maximum Principle for an Optimal Solution to a Differential Inclusion with End Points Constraints, SIAM Journal on Control and Optimization, 25, 1, p. 145-157. http://dx.doi.org/10.1137/0325010
Type
Article accepté pour publication ou publiéDate
1987Journal name
SIAM Journal on Control and OptimizationVolume
25Number
1Publisher
SIAM
Pages
145-157
Publication identifier
Metadata
Show full item recordAuthor(s)
Frankowska, HalinaAbstract (EN)
We derive Pontryagin’s maximum principle for a general optimal control problem using the set-valued version of variational equation. We achieve this aim by exploiting an adequate differential calculus of set-valued maps. Furthermore, the calmness condition is replaced by a surjectivity condition involving reachable sets of the “set-valued linearization” of the initial control problem. Duality then provides both the “adjoint differential inclusion” and the maximum principle.Subjects / Keywords
differential inclusion; tangent cone; derivative of a set-valued map; convex process; variational inclusion; maximum principleRelated items
Showing items related by title and author.
-
Frankowska, Halina; Kaskosz, Barbara (1988) Article accepté pour publication ou publié
-
Set-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusions Aubin, Jean-Pierre; Frankowska, Halina (1997) Article accepté pour publication ou publié
-
Tonon, Daniela; Hoehene, Daniel; Frankowska, Halina (2013) Article accepté pour publication ou publié
-
Frankowska, Halina (1989) Article accepté pour publication ou publié
-
A priori estimates for operational differential inclusions and necessary conditions for optimality Frankowska, Halina (1990) Communication / Conférence