• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Observability of Systems under Uncertainty

Aubin, Jean-Pierre; Frankowska, Halina (1989), Observability of Systems under Uncertainty, SIAM Journal on Control and Optimization, 27, 5, p. 949-975. http://dx.doi.org/10.1137/0327051

Type
Article accepté pour publication ou publié
Date
1989
Journal name
SIAM Journal on Control and Optimization
Volume
27
Number
5
Publisher
SIAM
Pages
949-975
Publication identifier
http://dx.doi.org/10.1137/0327051
Metadata
Show full item record
Author(s)
Aubin, Jean-Pierre
Frankowska, Halina
Abstract (EN)
The evolution of the state $x( \cdot )$ of a system under uncertainty governed by a differential inclusion \[{\text{for almost all }}t \in [0,T],\qquad x'(t) \in F(t,x(t))\] is observed through an observation map H: \[\forall t \in [0,T],\quad y(t) \in H(x(t)).\] The set-valued character due to the uncertainty leads to the introduction of the following: Sharp input-output map, which is the (usual) product \[\forall x_0 \in X,\quad I\_(x_0 ): = (H \circ \mathcal{S})(x_0 ): = \mathop \cup \limits_{x( \cdot ) \in \mathcal{S}(x_0 )} H(x( \cdot )).\] Hazy input-output map, which is the square product\[\forall x_0 \in X,\quad I_ + (x_0 ): = (H\square \mathcal{S})(x_0 ): = \mathop \cap \limits_{x( \cdot ) \in \mathcal{S}(x_0 )} H(x( \cdot )).\] Where $\mathcal{S}$ denotes the solution map, recovering the input $x_0 $ from the outputs $I_ - x_0 $ or $I_ + x_0 $ means that these input–output maps are “injective” in the sense that, locally, \[x_1 \ne x_2 \Rightarrow I(x_1 ) \cap I(x_2 ) = \emptyset.\] Criteria for both sharp and hazy local observability are provided in terms of (global sharp and hazy observability of the variational inclusion \[w'(t) \in DF(t,\bar x(t),\bar x'(t))(w(t)),\] which is a “linearization” of the differential inclusion along a solution $\bar x( \cdot )$, where for almost all t, $DF(t,x,y)(u)$ denotes the contingent derivative of the set-valued map $F(t, \cdot , \cdot )$ at a point $(x,y)$ of its graph. These conclusions are reached by implementing the following strategy: 1. Provide a general principle of local injectivity and observability of a set-valued map I, which derives these properties from the fact that the kernel of an adequate derivative of I is equal to zero. 2. Supply chain rule formulas that allow computation of the derivatives of the usual product $I_ - $ and the square product $I_ + $ from the derivatives of the observation map H and the solution map $\mathcal{S}$. Characterize the various derivatives of the solution map $\mathcal{S}$ in terms of the solution maps of the associated variational inclusions. 4. Piece together these results for deriving local sharp and hazy observability of the original system from sharp and hazy observability of the variational inclusions. 5. Study global sharp and hazy observability of the variational inclusions.
Subjects / Keywords
convex process; set-valued derivative; differential inclusion; inverse mapping theorem; observability; uncertain system; variational inclusion

Related items

Showing items related by title and author.

  • Thumbnail
    Set-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusions 
    Aubin, Jean-Pierre; Frankowska, Halina (1997) Article accepté pour publication ou publié
  • Thumbnail
    Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty 
    Aubin, Jean-Pierre; Pujal, Dominique; Saint-Pierre, Patrick (2005) Chapitre d'ouvrage
  • Thumbnail
    On controllability and observability of implicit systems 
    Frankowska, Halina (1990) Article accepté pour publication ou publié
  • Thumbnail
    Homeostatic trajectories for a class of adapting economic systems 
    Aubin, Jean-Pierre; Day, Richard H. (1980) Article accepté pour publication ou publié
  • Thumbnail
    Bilateral Fixed-Points and Algebraic Properties of Viability Kernels and Capture Basins of Sets 
    Aubin, Jean-Pierre; Catté, Francine (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo