• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Observability of Systems under Uncertainty

Aubin, Jean-Pierre; Frankowska, Halina (1989), Observability of Systems under Uncertainty, SIAM Journal on Control and Optimization, 27, 5, p. 949-975. http://dx.doi.org/10.1137/0327051

Type
Article accepté pour publication ou publié
Date
1989
Nom de la revue
SIAM Journal on Control and Optimization
Volume
27
Numéro
5
Éditeur
SIAM
Pages
949-975
Identifiant publication
http://dx.doi.org/10.1137/0327051
Métadonnées
Afficher la notice complète
Auteur(s)
Aubin, Jean-Pierre
Frankowska, Halina
Résumé (EN)
The evolution of the state $x( \cdot )$ of a system under uncertainty governed by a differential inclusion \[{\text{for almost all }}t \in [0,T],\qquad x'(t) \in F(t,x(t))\] is observed through an observation map H: \[\forall t \in [0,T],\quad y(t) \in H(x(t)).\] The set-valued character due to the uncertainty leads to the introduction of the following: Sharp input-output map, which is the (usual) product \[\forall x_0 \in X,\quad I\_(x_0 ): = (H \circ \mathcal{S})(x_0 ): = \mathop \cup \limits_{x( \cdot ) \in \mathcal{S}(x_0 )} H(x( \cdot )).\] Hazy input-output map, which is the square product\[\forall x_0 \in X,\quad I_ + (x_0 ): = (H\square \mathcal{S})(x_0 ): = \mathop \cap \limits_{x( \cdot ) \in \mathcal{S}(x_0 )} H(x( \cdot )).\] Where $\mathcal{S}$ denotes the solution map, recovering the input $x_0 $ from the outputs $I_ - x_0 $ or $I_ + x_0 $ means that these input–output maps are “injective” in the sense that, locally, \[x_1 \ne x_2 \Rightarrow I(x_1 ) \cap I(x_2 ) = \emptyset.\] Criteria for both sharp and hazy local observability are provided in terms of (global sharp and hazy observability of the variational inclusion \[w'(t) \in DF(t,\bar x(t),\bar x'(t))(w(t)),\] which is a “linearization” of the differential inclusion along a solution $\bar x( \cdot )$, where for almost all t, $DF(t,x,y)(u)$ denotes the contingent derivative of the set-valued map $F(t, \cdot , \cdot )$ at a point $(x,y)$ of its graph. These conclusions are reached by implementing the following strategy: 1. Provide a general principle of local injectivity and observability of a set-valued map I, which derives these properties from the fact that the kernel of an adequate derivative of I is equal to zero. 2. Supply chain rule formulas that allow computation of the derivatives of the usual product $I_ - $ and the square product $I_ + $ from the derivatives of the observation map H and the solution map $\mathcal{S}$. Characterize the various derivatives of the solution map $\mathcal{S}$ in terms of the solution maps of the associated variational inclusions. 4. Piece together these results for deriving local sharp and hazy observability of the original system from sharp and hazy observability of the variational inclusions. 5. Study global sharp and hazy observability of the variational inclusions.
Mots-clés
convex process; set-valued derivative; differential inclusion; inverse mapping theorem; observability; uncertain system; variational inclusion

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Set-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusions 
    Aubin, Jean-Pierre; Frankowska, Halina (1997) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty 
    Aubin, Jean-Pierre; Pujal, Dominique; Saint-Pierre, Patrick (2005) Chapitre d'ouvrage
  • Vignette de prévisualisation
    On controllability and observability of implicit systems 
    Frankowska, Halina (1990) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Homeostatic trajectories for a class of adapting economic systems 
    Aubin, Jean-Pierre; Day, Richard H. (1980) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Bilateral Fixed-Points and Algebraic Properties of Viability Kernels and Capture Basins of Sets 
    Aubin, Jean-Pierre; Catté, Francine (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo