• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Rigidity results for semilinear elliptic equations with exponential nonlinearities and Moser-Trudinger-Onofri inequalities on two-dimensional Riemannian manifolds

Dolbeault, Jean; Esteban, Maria J.; Jankowiak, Gaspard (2015), Rigidity results for semilinear elliptic equations with exponential nonlinearities and Moser-Trudinger-Onofri inequalities on two-dimensional Riemannian manifolds, Calculus of Variations and Partial Differential Equations, 54, 3, p. 2465-2481. 10.1007/s00526-015-0871-9

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01089318
Date
2015
Journal name
Calculus of Variations and Partial Differential Equations
Volume
54
Number
3
Publisher
Springer
Published in
Paris
Pages
2465-2481
Publication identifier
10.1007/s00526-015-0871-9
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc

Esteban, Maria J. cc

Jankowiak, Gaspard cc
Abstract (EN)
This paper is devoted to the Moser-Trudinger-Onofri inequality on smooth compact connected Riemannian manifolds. We establish a rigidity result for the Euler-Lagrange equation and deduce an estimate of the optimal constant in the inequality on two-dimensional closed Riemannian manifolds. Compared to existing results, we provide a non-local criterion which is well adapted to variational methods, introduce a nonlinear flow along which the evolution of a functional related with the inequality is monotone and get an integral remainder term which allows to discuss optimality issues. As an important application of our method, we also consider the non-compact case of the Moser-Trudinger-Onofri inequality on the two-dimensional Euclidean space, with weights. The standard weight is the one that is computed when projecting the two-dimensional sphere using the stereographic projection, but we also give more general results which are of interest, for instance, for the Keller-Segel model in chemotaxis
Subjects / Keywords
uniqueness

Related items

Showing items related by title and author.

  • Thumbnail
    Onofri inequalities and rigidity results 
    Dolbeault, Jean; Esteban, Maria J.; Jankowiak, Gaspard (2017) Article accepté pour publication ou publié
  • Thumbnail
    Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields 
    Bonheure, Denis; Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael (2019) Article accepté pour publication ou publié
  • Thumbnail
    Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities 
    Dolbeault, Jean; Esteban, Maria J.; Filippas, Stathis; Tertikas, Achilles (2015) Article accepté pour publication ou publié
  • Thumbnail
    The Moser-Trudinger-Onofri inequality 
    Dolbeault, Jean; Esteban, Maria J.; Jankowiak, Gaspard (2015) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear flows and rigidity results on compact manifolds 
    Loss, Michael; Esteban, Maria J.; Dolbeault, Jean (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo