• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection

Fadili, Jalal; Peyré, Gabriel; Vaiter, Samuel; Deledalle, Charles-Alban (2014), Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection, SIAM Journal on Imaging Sciences, 7, 4, p. 2448-2487. http://dx.doi.org/10.1137/140968045

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00987295
Date
2014
Journal name
SIAM Journal on Imaging Sciences
Volume
7
Number
4
Publisher
SIAM
Pages
2448-2487
Publication identifier
http://dx.doi.org/10.1137/140968045
Metadata
Show full item record
Author(s)
Fadili, Jalal
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Peyré, Gabriel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vaiter, Samuel cc

Deledalle, Charles-Alban
Abstract (EN)
Algorithms to solve variational regularization of ill-posed inverse problems usually involve operators that depend on a collection of continuous parameters. When these operators enjoy some (local) regularity, these parameters can be selected using the so-called Stein Unbiased Risk Estimate (SURE). While this selection is usually performed by exhaustive search, we address in this work the problem of using the SURE to efficiently optimize for a collection of continuous parameters of the model. When considering non-smooth regularizers, such as the popular l1-norm corresponding to soft-thresholding mapping, the SURE is a discontinuous function of the parameters preventing the use of gradient descent optimization techniques. Instead, we focus on an approximation of the SURE based on finite differences as proposed in (Ramani et al., 2008). Under mild assumptions on the estimation mapping, we show that this approximation is a weakly differentiable function of the parameters and its weak gradient, coined the Stein Unbiased GrAdient estimator of the Risk (SUGAR), provides an asymptotically (with respect to the data dimension) unbiased estimate of the gradient of the risk. Moreover, in the particular case of soft-thresholding, the SUGAR is proved to be also a consistent estimator. The SUGAR can then be used as a basis to perform a quasi-Newton optimization. The computation of the SUGAR relies on the closed-form (weak) differentiation of the non-smooth function. We provide its expression for a large class of iterative proximal splitting methods and apply our strategy to regularizations involving non-smooth convex structured penalties. Illustrations on various image restoration and matrix completion problems are given.
Subjects / Keywords
low rank; sparsity; proximal splitting; parameter selection; risk estimation; SURE; Inverse problem

Related items

Showing items related by title and author.

  • Thumbnail
    Unbiased Risk Estimation for Sparse Analysis Regularization 
    Dossal, Charles; Fadili, Jalal; Peyré, Gabriel; Vaiter, Samuel; Deledalle, Charles-Alban (2012) Communication / Conférence
  • Thumbnail
    The degrees of freedom of the Group Lasso for a General Design 
    Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Deledalle, Charles-Alban; Dossal, Charles (2013) Communication / Conférence
  • Thumbnail
    Risk estimation for matrix recovery with spectral regularization 
    Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
  • Thumbnail
    Proximal Splitting Derivatives for Risk Estimation 
    Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
  • Thumbnail
    Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation 
    Fadili, Jalal; Dossal, Charles; Peyré, Gabriel; Deledalle, Charles-Alban; Vaiter, Samuel (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo