
Kinetic Formulation for a Parabolic Conservation Law. Application to Homogenization
Dalibard, Anne-Laure (2007), Kinetic Formulation for a Parabolic Conservation Law. Application to Homogenization, SIAM Journal on Mathematical Analysis, 39, 3, p. 891-915. http://dx.doi.org/10.1137/060662770
View/ Open
Type
Article accepté pour publication ou publiéDate
2007Journal name
SIAM Journal on Mathematical AnalysisVolume
39Number
3Publisher
SIAM
Pages
891-915
Publication identifier
Metadata
Show full item recordAuthor(s)
Dalibard, Anne-LaureAbstract (EN)
We derive a kinetic formulation for the parabolic scalar conservation law $\partial_t u + \mathrm{div}_y A(y,u) - \Delta_y u=0$. This allows us to define a weaker notion of solutions in $L^1$, which is enough to recover the $L^1$ contraction principle. We also apply this kinetic formulation to a homogenization problem studied in a previous paper; namely, we prove that the kinetic solution $u^{\varepsilon}$ of $\partial_t u^{\varepsilon} + \mathrm{div}_x A\left({x}/{\varepsilon}, u^{\varepsilon} \right)- \varepsilon\Delta_x u^{\varepsilon}=0$ behaves in $L^1_{\text{loc}}$ as $v\left( {x}/{\varepsilon}, \bar{u}(t,x)\right)$, where v is the solution of a cell problem and $\bar{u}$ the solution of the homogenized problem.Subjects / Keywords
homogenization; kinetic formulation; scalar conservation lawRelated items
Showing items related by title and author.
-
Dalibard, Anne-Laure (2006) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2007) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2009) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2006) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2008) Article accepté pour publication ou publié