dc.contributor.author | Dalibard, Anne-Laure | |
dc.date.accessioned | 2014-05-19T08:44:39Z | |
dc.date.available | 2014-05-19T08:44:39Z | |
dc.date.issued | 2007 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/13320 | |
dc.language.iso | en | en |
dc.subject | homogenization | en |
dc.subject | kinetic formulation | en |
dc.subject | scalar conservation law | en |
dc.subject.ddc | 515 | en |
dc.title | Kinetic Formulation for a Parabolic Conservation Law. Application to Homogenization | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We derive a kinetic formulation for the parabolic scalar conservation law $\partial_t u + \mathrm{div}_y A(y,u) - \Delta_y u=0$. This allows us to define a weaker notion of solutions in $L^1$, which is enough to recover the $L^1$ contraction principle. We also apply this kinetic formulation to a homogenization problem studied in a previous paper; namely, we prove that the kinetic solution $u^{\varepsilon}$ of $\partial_t u^{\varepsilon} + \mathrm{div}_x A\left({x}/{\varepsilon}, u^{\varepsilon} \right)- \varepsilon\Delta_x u^{\varepsilon}=0$ behaves in $L^1_{\text{loc}}$ as $v\left( {x}/{\varepsilon}, \bar{u}(t,x)\right)$, where v is the solution of a cell problem and $\bar{u}$ the solution of the homogenized problem. | en |
dc.relation.isversionofjnlname | SIAM Journal on Mathematical Analysis | |
dc.relation.isversionofjnlvol | 39 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 2007 | |
dc.relation.isversionofjnlpages | 891-915 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1137/060662770 | en |
dc.relation.isversionofjnlpublisher | SIAM | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |