Viability theorems for a class of differential-operator inclusions
Shuzhong, Shi (1989), Viability theorems for a class of differential-operator inclusions, Journal of Differential Equations, 79, 2, p. 232-257. http://dx.doi.org/10.1016/0022-0396(89)90101-0
Type
Article accepté pour publication ou publiéDate
1989Journal name
Journal of Differential EquationsVolume
79Number
2Publisher
Elsevier
Pages
232-257
Publication identifier
Metadata
Show full item recordAuthor(s)
Shuzhong, ShiAbstract (EN)
This paper discusses the following viability problem of a differential inclusion, x′(t) + Ax(t) ϵF(x(t))x(0) = x0ϵK∀t ⩾ 0, x(t) ϵK, where K is a compact subset of a Banach space X, − A is the infinitesimal generator of a compact differentiable semigroup of bounded linear operators on X, and F: K ⇉ X is upper semicontinuous with compact convex values. We show that a natural tanegential condition is necessary and sufficient for the existence of a global solution to this problem.Subjects / Keywords
viability problem; differential inclusionRelated items
Showing items related by title and author.
-
Cornet, Bernard (1983) Article accepté pour publication ou publié
-
Doyen, Luc (1993) Article accepté pour publication ou publié
-
Haddad, Georges (1981) Article accepté pour publication ou publié
-
Set-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusions Aubin, Jean-Pierre; Frankowska, Halina (1997) Article accepté pour publication ou publié
-
Monotone trajectories of differential inclusions and functional differential inclusions with memory Haddad, Georges (1981) Article accepté pour publication ou publié