Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions
Berestycki, Henri; Pacella, Filomena (1989), Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions, Journal of Functional Analysis, 87, 1, p. 177-211. http://dx.doi.org/10.1016/0022-1236(89)90007-4
Type
Article accepté pour publication ou publiéDate
1989Nom de la revue
Journal of Functional AnalysisVolume
87Numéro
1Éditeur
Elsevier
Pages
177-211
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
In this paper we establish symmetry results for positive solutions of semilinear elliptic equations of the type Δu + f(u) = 0 with mixed boundary conditions in bounded domains. In particular we prove that any positive solution u of such an equation in a spherical sector ∑(α, R) is spherically symmetric if α, the amplitude of the sector, is such that 0 < α ⩽ π. By constructing counterexamples we show that this result is optimal in the sense that it does not hold for sectors bE(α, R) with amplitude π < α < 2π. More general symmetry properties are established for positive solutions in domains with axial symmetry. These results extend the well-known theorems of B. Gidas, W. M. Ni, and L. Nirenberg [Comm. Math. Phys.68 (1979), 209–243] to sector-like domains and mixed boundary conditions.Mots-clés
elliptic equationsPublications associées
Affichage des éléments liés par titre et auteur.
-
Dolbeault, Jean; Felmer, Patricio (2000) Article accepté pour publication ou publié
-
Dolbeault, Jean (1999) Document de travail / Working paper
-
Berestycki, Henri; Lions, Pierre-Louis (1983) Article accepté pour publication ou publié
-
Lasry, Jean-Michel; Lions, Pierre-Louis (1989) Article accepté pour publication ou publié
-
Marchesani, Stefano; Olla, Stefano (2020) Article accepté pour publication ou publié