dc.contributor.author | Berestycki, Henri | |
dc.contributor.author | Pacella, Filomena | |
dc.date.accessioned | 2014-05-20T14:48:40Z | |
dc.date.available | 2014-05-20T14:48:40Z | |
dc.date.issued | 1989 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/13350 | |
dc.language.iso | en | en |
dc.subject | elliptic equations | en |
dc.subject.ddc | 515 | en |
dc.title | Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper we establish symmetry results for positive solutions of semilinear elliptic equations of the type Δu + f(u) = 0 with mixed boundary conditions in bounded domains. In particular we prove that any positive solution u of such an equation in a spherical sector ∑(α, R) is spherically symmetric if α, the amplitude of the sector, is such that 0 < α ⩽ π. By constructing counterexamples we show that this result is optimal in the sense that it does not hold for sectors bE(α, R) with amplitude π < α < 2π. More general symmetry properties are established for positive solutions in domains with axial symmetry. These results extend the well-known theorems of B. Gidas, W. M. Ni, and L. Nirenberg [Comm. Math. Phys.68 (1979), 209–243] to sector-like domains and mixed boundary conditions. | en |
dc.relation.isversionofjnlname | Journal of Functional Analysis | |
dc.relation.isversionofjnlvol | 87 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 1989 | |
dc.relation.isversionofjnlpages | 177-211 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/0022-1236(89)90007-4 | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |