
Singular evolution on maniforlds, their smoothing properties, and Sobolev inequalities
Bonforte, Matteo; Grillo, Gabriele (2007), Singular evolution on maniforlds, their smoothing properties, and Sobolev inequalities, Discrete and Continuous Dynamical Systems. Series A, p. 130-137. http://dx.doi.org/10.3934/proc.2007.2007.130
View/ Open
Type
Article accepté pour publication ou publiéDate
2007Journal name
Discrete and Continuous Dynamical Systems. Series APublisher
AIMS
Pages
130-137
Publication identifier
Metadata
Show full item recordAbstract (EN)
The evolution equation [u_ = \Delta_pu] , posed on a Riemannian manifold, is studied in the singular range [p \in 2] (1; 2). It is shown that if the manifold supports a suitable Sobolev inequality, the smoothing effect [||u(t)||\infty\leq C ||u(0)||_q^\gamma] / [t^\alpha] holds true for suitable for [\alpha, \gamma] and that the converse holds if [p] is sufficiently close to 2, or in the degenerate range [p] > 2. In such ranges, the Sobolev inequality and the smoothing efect are then equivalent .Subjects / Keywords
Singular evolutions; Riemannian manifolds; Sobolev inequalities; smoothing effectRelated items
Showing items related by title and author.
-
Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean; Grillo, Gabriele; Vazquez, Juan-Luis (2007) Article accepté pour publication ou publié
-
Vazquez, Juan-Luis; Grillo, Gabriele; Dolbeault, Jean; Bonforte, Matteo (2010) Article accepté pour publication ou publié
-
Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2022) Document de travail / Working paper
-
Grillo, Gabriele; Vazquez, Juan-Luis; Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean (2009) Article accepté pour publication ou publié
-
Bonforte, Matteo; Grillo, Gabriele; Vazquez, Juan-Luis (2008) Article accepté pour publication ou publié