
Jeffreys Priors for Mixture Models
Robert, Christian P.; Grazian, Clara (2014), Jeffreys Priors for Mixture Models, SIS 2014, 2014-06, Cagliari, Italie
View/ Open
Type
Communication / ConférenceExternal document link
http://www.sis2014.it/proceedings/allpapers/2891.pdfDate
2014Conference title
SIS 2014Conference date
2014-06Conference city
CagliariConference country
ItaliePages
6
Metadata
Show full item recordAbstract (EN)
Mixture models may be a useful and flexible tool to describe data with a complicated structure, for instance characterized by multimodality or asymmetry. In a Bayesian setting, it is a well established fact that one need to be careful in using improper prior distributions, since the posterior distribution may not be proper. This feature leads to problems in carry out an objective Bayesian approach. In this work an analysis of Jeffreys priors in the setting of finite mixture models will be presented.Abstract (other language)
I modelli mistura sono uno strumento utile e flessibile per descrivere dati dalla struttura complicata, ad esempio multimodale o asimmetrica. In am- bito Bayesiano, ` e un fatto noto in letteratura che sia necessario essere attenti con l’utilizzo di distribuzioni a priori improprie, dal momento che la distribuzione a pos- teriori potrebbe non essere propria. Purtroppo, questa caratteristica rende difficile un approccio Bayesiano oggettivo. In questo lavoro, verr ` a presentata un’analisi dei risultati ottenuti utilizzando distribuzioni a priori (non informative) di Jeffreys.Subjects / Keywords
Objective Bayes; Mixture models; Jeffreys priorRelated items
Showing items related by title and author.
-
Grazian, Clara; Robert, Christian P. (2015) Communication / Conférence
-
Grazian, Clara; Robert, Christian P. (2018) Article accepté pour publication ou publié
-
Robert, Christian P.; Grazian, Clara; Masiani, Illaria (2015) Article accepté pour publication ou publié
-
Banterle, Marco; Grazian, Clara; Robert, Christian P. (2014) Document de travail / Working paper
-
Grazian, Clara (2016-04) Thèse