• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Jeffreys Priors for Mixture Models

Robert, Christian P.; Grazian, Clara (2014), Jeffreys Priors for Mixture Models, SIS 2014, 2014-06, Cagliari, Italie

View/Open
2891.pdf (182.4Kb)
Type
Communication / Conférence
External document link
http://www.sis2014.it/proceedings/allpapers/2891.pdf
Date
2014
Conference title
SIS 2014
Conference date
2014-06
Conference city
Cagliari
Conference country
Italie
Pages
6
Metadata
Show full item record
Author(s)
Robert, Christian P.
Grazian, Clara
Abstract (EN)
Mixture models may be a useful and flexible tool to describe data with a complicated structure, for instance characterized by multimodality or asymmetry. In a Bayesian setting, it is a well established fact that one need to be careful in using improper prior distributions, since the posterior distribution may not be proper. This feature leads to problems in carry out an objective Bayesian approach. In this work an analysis of Jeffreys priors in the setting of finite mixture models will be presented.
Abstract (other language)
I modelli mistura sono uno strumento utile e flessibile per descrivere dati dalla struttura complicata, ad esempio multimodale o asimmetrica. In am- bito Bayesiano, ` e un fatto noto in letteratura che sia necessario essere attenti con l’utilizzo di distribuzioni a priori improprie, dal momento che la distribuzione a pos- teriori potrebbe non essere propria. Purtroppo, questa caratteristica rende difficile un approccio Bayesiano oggettivo. In questo lavoro, verr ` a presentata un’analisi dei risultati ottenuti utilizzando distribuzioni a priori (non informative) di Jeffreys.
Subjects / Keywords
Objective Bayes; Mixture models; Jeffreys prior
JEL
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Jeffreys’ Priors for Mixture Estimation 
    Grazian, Clara; Robert, Christian P. (2015) Communication / Conférence
  • Thumbnail
    Jeffreys priors for mixture estimation: properties and alternatives 
    Grazian, Clara; Robert, Christian P. (2018) Article accepté pour publication ou publié
  • Thumbnail
    Comment on Article by Dawid and Musio 
    Robert, Christian P.; Grazian, Clara; Masiani, Illaria (2015) Article accepté pour publication ou publié
  • Thumbnail
    Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching 
    Banterle, Marco; Grazian, Clara; Robert, Christian P. (2014) Document de travail / Working paper
  • Thumbnail
    Contributions aux méthodes bayésiennes approchées pour modèles complexes 
    Grazian, Clara (2016-04) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo