• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • Consulter le document
  •   Accueil
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

A Regularized Kalman Filter (rgKF) for Spiky Data

Darolles, Serge; Duvaut, Patrick; Jay, Emmanuelle (2013), A Regularized Kalman Filter (rgKF) for Spiky Data, dans Darolles, Serge; Duvaut, Patrick; Jay, Emmanuelle, Multi-factor models and signal processing techniques: application to quantitative finance, ISTE ; J. Wiley : London ; Hoboken, NJ, p. 117-132. 10.1002/9781118577387.ch4

Type
Chapitre d'ouvrage
Date
2013
Titre de l'ouvrage
Multi-factor models and signal processing techniques: application to quantitative finance
Auteurs de l’ouvrage
Darolles, Serge; Duvaut, Patrick; Jay, Emmanuelle
Éditeur
ISTE ; J. Wiley
Ville d’édition
London ; Hoboken, NJ
Isbn
978-1-84821-419-4
Nombre de pages
184
Pages
117-132
Identifiant publication
10.1002/9781118577387.ch4
Métadonnées
Afficher la notice complète
Auteur(s)
Darolles, Serge
Dauphine Recherches en Management [DRM]
Duvaut, Patrick

Jay, Emmanuelle
Résumé (EN)
This chapter presents a new family of algorithms named regularized Kalman Filters (rgKFs) that have been derived to detect and estimate exogenous outliers that might occur in the observation equation of a standard Kalman filter (KF). Inspired from the robust Kalman filter (RKF) of Mattingley and Boyd, which makes use of a l1-regularization step, the authors introduce a simple but efficient detection step in the recursive equations of the RKF. This solution is one means by which to solve the problem of adapting the value of the l1-regularization parameter: when an outlier is detected in the innovation term of the KF, the value of the regularization parameter is set to a value that will let the l1-based optimization problem estimate the amplitude of the spike. The chapter deals with the application of algorithm to detect irregularities in hedge fund returns.
Mots-clés
regularized Kalman filter (rgKF); robust Kalman filter (RKF); spiky data
JEL
C30 - General
G12 - Asset Pricing; Trading Volume; Bond Interest Rates

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    lq-regularization of the Kalman filter for exogenous outlier removal: application to hedge funds analysis 
    Jay, Emmanuelle; Duvaut, Patrick; Darolles, Serge; Gouriéroux, Christian (2011) Communication / Conférence
  • Vignette de prévisualisation
    lq-regularization of the Kalman filter for exogenous outlier removal: application to hedge funds analysis 
    Gouriéroux, Christian; Darolles, Serge; Jay, Emmanuelle; Duvaut, Patrick (2011) Communication / Conférence
  • Vignette de prévisualisation
    Least Squares Estimation (LSE) and Kalman Filtering (KF) for Factor Modeling: A Geometrical Perspective 
    Darolles, Serge; Duvaut, Patrick; Jay, Emmanuelle (2013) Chapitre d'ouvrage
  • Vignette de prévisualisation
    Multifactor Models : Examining the potential of signal processing techniques 
    Jay, Emmanuelle; Duvaut, Patrick; Darolles, Serge; Chretien, Arnaud (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Factor Selection 
    Darolles, Serge; Duvaut, Patrick; Jay, Emmanuelle (2013) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo