• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Viscosity Solutions of Hamilton-Jacobi Equations in Banach Spaces

Crandall, Michael G.; Lions, Pierre-Louis (1985), Viscosity Solutions of Hamilton-Jacobi Equations in Banach Spaces, North-Holland Mathematics Studies, 110, p. 115-119. http://dx.doi.org/10.1016/S0304-0208(08)72698-7

Type
Article accepté pour publication ou publié
Date
1985
Journal name
North-Holland Mathematics Studies
Volume
110
Publisher
Elsevier
Pages
115-119
Publication identifier
http://dx.doi.org/10.1016/S0304-0208(08)72698-7
Metadata
Show full item record
Author(s)
Crandall, Michael G.
Lions, Pierre-Louis
Abstract (EN)
This chapter analyzes viscosity solutions of Hamilton–Jacobi equations (HJEs) in Banach spaces. The chapter considers HJEs of the form H(x, u, Du) = 0 in Ω where Ω is an open subset of a Banach space V, V* is the dual of V, H ∈ C(V × R × V*), and Du denotes the Frechet derivative of a function u: Ω → R. A function u is a classical solution of (HJ) in Ω if u is continuously Frechet differentiable on Ω and the equation is satisfied pointwise. The chapter describes that even if V = Rn, the notion of a classical solution is too restrictive to admit the “solutions” of HJEs that are important in the areas in which they arise—in particular, the “value” functions of control theory, the calculus of variations, and differential games that are usually nonclassical solutions of HJEs. The chapter sketches the basic definitions and some existence and uniqueness theorems in Banach spaces. The stability property of the class of viscosity subsolutions in regular spaces is also discussed in the chapter.
Subjects / Keywords
Hamilton-Jacobi Equations

Related items

Showing items related by title and author.

  • Thumbnail
    Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and B-continuous solutions 
    Crandall, Michael G.; Lions, Pierre-Louis (1991) Article accepté pour publication ou publié
  • Thumbnail
    Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms 
    Crandall, Michael G.; Lions, Pierre-Louis (1990) Article accepté pour publication ou publié
  • Thumbnail
    Hamilton-Jacobi equations in infinite dimensions I. Uniqueness of viscosity solutions 
    Crandall, Michael G.; Lions, Pierre-Louis (1985) Article accepté pour publication ou publié
  • Thumbnail
    Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions 
    Crandall, Michael G.; Lions, Pierre-Louis (1986) Article accepté pour publication ou publié
  • Thumbnail
    On existence and uniqueness of solutions of Hamilton-Jacobi equations 
    Crandall, Michael G.; Lions, Pierre-Louis (1986) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo