Viscosity Solutions of Hamilton-Jacobi Equations in Banach Spaces
Crandall, Michael G.; Lions, Pierre-Louis (1985), Viscosity Solutions of Hamilton-Jacobi Equations in Banach Spaces, North-Holland Mathematics Studies, 110, p. 115-119. http://dx.doi.org/10.1016/S0304-0208(08)72698-7
Type
Article accepté pour publication ou publiéDate
1985Nom de la revue
North-Holland Mathematics StudiesVolume
110Éditeur
Elsevier
Pages
115-119
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
This chapter analyzes viscosity solutions of Hamilton–Jacobi equations (HJEs) in Banach spaces. The chapter considers HJEs of the form H(x, u, Du) = 0 in Ω where Ω is an open subset of a Banach space V, V* is the dual of V, H ∈ C(V × R × V*), and Du denotes the Frechet derivative of a function u: Ω → R. A function u is a classical solution of (HJ) in Ω if u is continuously Frechet differentiable on Ω and the equation is satisfied pointwise. The chapter describes that even if V = Rn, the notion of a classical solution is too restrictive to admit the “solutions” of HJEs that are important in the areas in which they arise—in particular, the “value” functions of control theory, the calculus of variations, and differential games that are usually nonclassical solutions of HJEs. The chapter sketches the basic definitions and some existence and uniqueness theorems in Banach spaces. The stability property of the class of viscosity subsolutions in regular spaces is also discussed in the chapter.Mots-clés
Hamilton-Jacobi EquationsPublications associées
Affichage des éléments liés par titre et auteur.
-
Crandall, Michael G.; Lions, Pierre-Louis (1991) Article accepté pour publication ou publié
-
Crandall, Michael G.; Lions, Pierre-Louis (1990) Article accepté pour publication ou publié
-
Crandall, Michael G.; Lions, Pierre-Louis (1985) Article accepté pour publication ou publié
-
Crandall, Michael G.; Lions, Pierre-Louis (1986) Article accepté pour publication ou publié
-
Crandall, Michael G.; Lions, Pierre-Louis (1986) Article accepté pour publication ou publié