Show simple item record

dc.contributor.authorGayraud, Ghislaine
dc.contributor.authorRousseau, Judith
dc.date.accessioned2014-08-26T13:52:25Z
dc.date.available2014-08-26T13:52:25Z
dc.date.issued2005
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/13832
dc.language.isoenen
dc.subjectBayesian non-parametric estimationen
dc.subjectconvergence rates of the posterior distributionen
dc.subjectlevel seten
dc.subject.ddc519en
dc.titleRates of Convergence for a Bayesian Level Set Estimationen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe are interested in estimating level sets using a Bayesian non-parametric approach, from an independent and identically distributed sample drawn from an unknown distribution. Under fairly general conditions on the prior, we provide an upper bound on the rate of convergence of the Bayesian level set estimate, via the rate at which the posterior distribution concentrates around the true level set. We then consider, as an application, the log-spline prior in the two-dimensional unit cube. Assuming that the true distribution belongs to a class of Hölder, we provide an upper bound on the rate of convergence of the Bayesian level set estimates. We compare our results with existing rates of convergence in the frequentist non-parametric literature: the Bayesian level set estimator proves to be competitive and is also easy to compute, which is of no small importance. A simulation study is given as an illustration.en
dc.relation.isversionofjnlnameScandinavian Journal of Statistics
dc.relation.isversionofjnlvol32en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2005
dc.relation.isversionofjnlpages639-660en
dc.relation.isversionofdoihttp://dx.doi.org/10.1111/j.1467-9469.2005.00448.xen
dc.relation.isversionofjnlpublisherWileyen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record