• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • View Item
  •   BIRD Home
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Stochastic Volatility for Levy Processes

Geman, Hélyette; Carr, Peter; Madan, Dilip B.; Yor, Marc (2003), Stochastic Volatility for Levy Processes, Mathematical Finance, 13, 3, p. 345-382

View/Open
Stochastic_Volatility_Mathematical_Finance.pdf (412.8Kb)
Type
Article accepté pour publication ou publié
Date
2003-07
Journal name
Mathematical Finance
Volume
13
Number
3
Publisher
Wiley-Blackwell
Pages
345-382
Metadata
Show full item record
Author(s)
Geman, Hélyette
Carr, Peter
Madan, Dilip B.
Yor, Marc
Abstract (EN)
Three processes reflecting persistence of volatility are initially formulated by evaluating three Lévy processes at a time change given by the integral of a mean-reverting square root process. The model for the mean-reverting time change is then generalized to include non-Gaussian models that are solutions to Ornstein-Uhlenbeck equations driven by one-sided discontinuous Lévy processes permitting correlation with the stock. Positive stock price processes are obtained by exponentiating and mean correcting these processes, or alternatively by stochastically exponentiating these processes. The characteristic functions for the log price can be used to yield option prices via the fast Fourier transform. In general mean-corrected exponentiation performs better than employing the stochastic exponential. It is observed that the mean-corrected exponential model is not a martingale in the filtration in which it is originally defined. This leads us to formulate and investigate the important property of martingale marginals where we seek martingales in altered filtrations consistent with the one-dimensional marginal distributions of the level of the process at each future date.
Subjects / Keywords
Risque de marché; Gestion du risque; Volatilité (finances); Risk management; Volatility (finance); Stochastic processes; Processus stochastiques; Finances; Modèles mathématiques
JEL
C32 - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
G12 - Asset Pricing; Trading Volume; Bond Interest Rates
G14 - Information and Market Efficiency; Event Studies; Insider Trading

Related items

Showing items related by title and author.

  • Thumbnail
    From Local Volatility to Local Levy Models 
    Yor, Marc; Madan, Dilip B.; Carr, Peter; Geman, Hélyette (2004-10) Article accepté pour publication ou publié
  • Thumbnail
    Self-decomposability and option pricing 
    Yor, Marc; Madan, Dilip B.; Carr, Peter; Geman, Hélyette (2007) Article accepté pour publication ou publié
  • Thumbnail
    Risks in return : a pure jump perspective 
    Madan, Dilip B.; Geman, Hélyette (2005) Chapitre d'ouvrage
  • Thumbnail
    Pricing in incomplete markets : from absence of good deals to acceptable risk 
    Geman, Hélyette; Madan, Dilip B. (2004) Chapitre d'ouvrage
  • Thumbnail
    Mathematical Finance - Bachelier Congress 2000: Selected Papers from the First World Congress of the Bachelier Finance Society, Paris, June 29-July 1, 2000 
    Geman, Hélyette; Madan, Dilip B.; Pliska, Syanley R. (2002) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo