• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation

Frankowska, Halina (1989), Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation, Applied Mathematics and Optimization, 19, 1, p. 291-311. http://dx.doi.org/10.1007/BF01448202

View/Open
WP-87-069.pdf (652.4Kb)
Type
Article accepté pour publication ou publié
Date
1989
Journal name
Applied Mathematics and Optimization
Volume
19
Number
1
Publisher
Springer
Pages
291-311
Publication identifier
http://dx.doi.org/10.1007/BF01448202
Metadata
Show full item record
Author(s)
Frankowska, Halina
Abstract (EN)
In this paper we study the existence of optimal trajectories associated with a generalized solution to the Hamilton-Jacobi-Bellman equation arising in optimal control. In general, we cannot expect such solutions to be differentiable. But, in a way analogous to the use of distributions in PDE, we replace the usual derivatives with “contingent epiderivatives” and the Hamilton-Jacobi equation by two “contingent Hamilton-Jacobi inequalities.” We show that the value function of an optimal control problem verifies these “contingent inequalities.” Our approach allows the following three results: (a) The upper semicontinuous solutions to contingent inequalities are monotone along the trajectories of the dynamical system. (b) With every continuous solutionV of the contingent inequalities, we can associate an optimal trajectory along whichV is constant. (c) For such solutions, we can construct optimal trajectories through the corresponding optimal feedback. They are also “viscosity solutions” of a Hamilton-Jacobi equation. Finally, we prove a relationship between superdifferentials of solutions introduced by Crandallet al. [10] and the Pontryagin principle and discuss the link of viscosity solutions with Clarke's approach to the Hamilton-Jacobi equation.
Subjects / Keywords
Hamilton-Jacobi-Bellman equation

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation 
    Frankowska, Halina (1987) Communication / Conférence
  • Thumbnail
    Hamilton-Jacobi equations: Viscosity solutions and generalized gradients 
    Frankowska, Halina (1989) Article accepté pour publication ou publié
  • Thumbnail
    Solutions variationnelles et solutions de viscosité de l'équation de Hamilton-Jacobi 
    Roos, Valentine (2017-06-30) Thèse
  • Thumbnail
    Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati 
    Frankowska, Halina; Byrnes, Christopher (1992) Article accepté pour publication ou publié
  • Thumbnail
    On the single valuedness of Hamilton-Jacobi operators 
    Frankowska, Halina (1986) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo