Quasi-convex sets and size × curvature condition, application to nonlinear inversion
Chavent, Guy (1991), Quasi-convex sets and size × curvature condition, application to nonlinear inversion, Applied Mathematics and Optimization, 24, 1, p. 129-169. http://dx.doi.org/10.1007/BF01447739
Type
Article accepté pour publication ou publiéDate
1991Journal name
Applied Mathematics and OptimizationVolume
24Number
1Publisher
Springer
Pages
129-169
Publication identifier
Metadata
Show full item recordAuthor(s)
Chavent, GuyAbstract (EN)
We define a family of sets of a Hilbert space (“quasi-convex sets”) on which a generalization of the usual theory of projection on convex sets can be defined (existence, uniqueness, and stability of the projection of all points of some neighborhood of the set). We then give a constructive sufficient condition, called the size × curvature condition, for a setD to be quasi-convex, which involves radii of curvatures of curves lying on the setD. Finally, we use the above result for the study of nonlinear least-squares problems, as they appear in parameter estimation, for which we give a sufficient condition ensuring existence, uniqueness, and stability.Subjects / Keywords
nonlinear least-squares problems; Hilbert spaceRelated items
Showing items related by title and author.
-
Chavent, Guy (1991) Article accepté pour publication ou publié
-
Al Khoury, Philippe; Chavent, Guy (2006) Communication / Conférence
-
Bamberger, A.; Chavent, Guy; Lailly, P. (1979) Article accepté pour publication ou publié
-
Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
-
Da Lio, Francesca; Lions, Pierre-Louis; Barles, Guy; Souganidis, Panagiotis E. (2008) Article accepté pour publication ou publié