Mutational equations of the morphological dilation tubes
Doyen, Luc; Najman, Laurent; Mattioli, Juliette (1995), Mutational equations of the morphological dilation tubes, Journal of Mathematical Imaging and Vision, 5, 3, p. 219-230. http://dx.doi.org/10.1007/BF01248373
Type
Article accepté pour publication ou publiéExternal document link
https://hal-upec-upem.archives-ouvertes.fr/hal-00622457Date
1995Journal name
Journal of Mathematical Imaging and VisionVolume
5Number
3Publisher
Springer
Pages
219-230
Publication identifier
Metadata
Show full item recordAbstract (EN)
The present paper provides some differential results dealing with the morphological dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equations which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of ℝ n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.Subjects / Keywords
mathematical morphology; dilation tubes; mutational calculusRelated items
Showing items related by title and author.
-
Doyen, Luc (1993) Article accepté pour publication ou publié
-
Doyen, Luc (1995) Article accepté pour publication ou publié
-
Starck, Jean-Luc; Fadili, Jalal; Peyré, Gabriel (2010) Article accepté pour publication ou publié
-
Najman, Laurent; Schmitt, Michel Article accepté pour publication ou publié
-
Schmitt, Michel; Najman, Laurent (1996) Article accepté pour publication ou publié