A geometric theory forL 2-stability of the inverse problem in a one-dimensional elliptic equation from anH 1-observation
Chavent, Guy; Kunisch, Karl (1993), A geometric theory forL 2-stability of the inverse problem in a one-dimensional elliptic equation from anH 1-observation, Applied Mathematics and Optimization, 27, 3, p. 231-260. http://dx.doi.org/10.1007/BF01314817
Type
Article accepté pour publication ou publiéDate
1993Journal name
Applied Mathematics and OptimizationVolume
27Number
3Publisher
Springer
Pages
231-260
Publication identifier
Metadata
Show full item recordAbstract (EN)
This study provides a stability theory for the nonlinear least-squares formulation of estimating the diffusion coefficient in a two-point boundary-value problem from an error-corrupted observation of the state variable. It is based on analysing the projection of the observation on the nonconvex attainable set.Subjects / Keywords
Parameter estimation; Nonlinear least squares; Stability analysis; Elliptic boundary-value problemsRelated items
Showing items related by title and author.
-
Bamberger, A.; Chavent, Guy; Lailly, P. (1979) Article accepté pour publication ou publié
-
Lissy, Pierre (2017) Article accepté pour publication ou publié
-
Lissy, Pierre; Roventa, Ionel (2019) Article accepté pour publication ou publié
-
de Pascale, Luigi; Louet, Jean (2017-08) Document de travail / Working paper
-
Guerrero, Sergio; Glass, Olivier; Puel, Jean-Pierre; Ervedoza, Sylvain (2012) Article accepté pour publication ou publié