dc.contributor.author | Chavent, Guy | |
dc.contributor.author | Kunisch, Karl | |
dc.date.accessioned | 2014-12-15T09:41:02Z | |
dc.date.available | 2014-12-15T09:41:02Z | |
dc.date.issued | 1993 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/14447 | |
dc.language.iso | en | en |
dc.subject | Parameter estimation | en |
dc.subject | Nonlinear least squares | en |
dc.subject | Stability analysis | en |
dc.subject | Elliptic boundary-value problems | en |
dc.subject.ddc | 519 | en |
dc.title | A geometric theory forL 2-stability of the inverse problem in a one-dimensional elliptic equation from anH 1-observation | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | This study provides a stability theory for the nonlinear least-squares formulation of estimating the diffusion coefficient in a two-point boundary-value problem from an error-corrupted observation of the state variable. It is based on analysing the projection of the observation on the nonconvex attainable set. | en |
dc.relation.isversionofjnlname | Applied Mathematics and Optimization | |
dc.relation.isversionofjnlvol | 27 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 1993 | |
dc.relation.isversionofjnlpages | 231-260 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/BF01314817 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |