• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

The cut cone III: On the role of triangle facets

Deza, Michel; Laurent, Monique; Poljak, Svatopluk (1992), The cut cone III: On the role of triangle facets, Graphs and Combinatorics, 8, 2, p. 125-142. http://dx.doi.org/10.1007/BF02350631

Type
Article accepté pour publication ou publié
Date
1992
Journal name
Graphs and Combinatorics
Volume
8
Number
2
Publisher
Springer
Pages
125-142
Publication identifier
http://dx.doi.org/10.1007/BF02350631
Metadata
Show full item record
Author(s)
Deza, Michel
Laurent, Monique
Poljak, Svatopluk
Abstract (EN)
The cut polytopeP n is the convex hull of the incidence vectors of the cuts (i.e. complete bipartite subgraphs) of the complete graph onn nodes. A well known class of facets ofP n arises from the triangle inequalities:x ij +x ik +x jk ≤2 andx ij −x ik −x jk ≤0 for 1≤i, j, k≤n. Hence, the metric polytopeM n , defined as the solution set of the triangle inequalities, is a relaxation ofP n .We consider several properties of geometric type forP n , in particular, concerning its position withinM n . Strengthening the known fact ([3]) thatP n has diameter 1, we show that any set ofk cuts,k≤log2 n, satisfying some additional assumption, determines a simplicial face ofMn and thus, also, ofP n . In particular, the collection of low dimension faces ofP n is contained in that ofM n . Among a large subclass of the facets ofP n , the triangle facets are the closest ones to the barycentrum ofP n and we conjecture that this result holds in general. The lattice generated by all even cuts (corresponding to bipartitions of the nodes into sets of even cardinality) is characterized and some additional questions on the links between general facets ofP n and its triangle facets are mentioned.
Subjects / Keywords
graphs

Related items

Showing items related by title and author.

  • Thumbnail
    Facets for the cut cone I 
    Deza, Michel; Laurent, Monique (1992) Article accepté pour publication ou publié
  • Thumbnail
    Facets for the cut cone II: Clique-web inequalities 
    Deza, Michel; Laurent, Monique (1992) Article accepté pour publication ou publié
  • Thumbnail
    Bouquets of geometric lattices: some algebraic and topological aspects 
    Laurent, Monique; Deza, Michel (1989) Article accepté pour publication ou publié
  • Thumbnail
    Bouquets of Geometric Lattices: some Algebraic and Topological Aspects 
    Laurent, Monique; Deza, Michel (1989) Article accepté pour publication ou publié
  • Thumbnail
    A characterization of knapsacks with the max-flow-—min-cut property 
    Laurent, Monique; Sassano, Antonio (1992) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo