• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Activity Identification and Local Linear Convergence of Douglas–Rachford / ADMM under Partial Smoothness

Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel; Luke, Russell (2015), Activity Identification and Local Linear Convergence of Douglas–Rachford / ADMM under Partial Smoothness, in Jean-François Aujol, Mila Nikolova, Nicolas Papadakis, Scale Space and Variational Methods in Computer Vision 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4, 2015, Proceedings, Springer : Berlin Heidelberg, p. 642-653. 10.1007/978-3-319-18461-6_51

Type
Communication / Conférence
External document link
https://arxiv.org/abs/1412.6858v7
Date
2015
Book title
Scale Space and Variational Methods in Computer Vision 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4, 2015, Proceedings
Book author
Jean-François Aujol, Mila Nikolova, Nicolas Papadakis
Publisher
Springer
Published in
Berlin Heidelberg
Paris
ISBN
978-3-319-18460-9
Pages
642-653
Publication identifier
10.1007/978-3-319-18461-6_51
Metadata
Show full item record
Author(s)
Liang, Jingwei
Fadili, Jalal
Peyré, Gabriel
Luke, Russell
Abstract (EN)
Proximal splitting algorithms are becoming popular to solve convex optimization prob-lems in variational image processing. Within this class, Douglas–Rachford (DR) and ADMMare designed to minimize the sum of two proper lower semicontinuous convex functionswhose proximity operators are easy to compute. The goal of this work is to understandthe local convergence behaviour of DR/ADMM when the involved functions are moreoverpartly smooth. More precisely, when one of the functions and the conjugate of the otherare partly smooth relative to their respective manifolds, we show that DR/ADMM identifiesthese manifolds in finite time. Moreover, when these manifolds are affine or linear, we provethat DR is locally linearly convergent with a rate in terms of the cosine of the Friedrichsangle between the two tangent subspaces. This is illustrated by several concrete examplesand supported by numerical experiments.
Subjects / Keywords
Douglas–Rachford splitting; Local Linear Convergence; Partial Smoothnes; Finite Activity Identification; ADMM

Related items

Showing items related by title and author.

  • Thumbnail
    Local Linear Convergence of Douglas-Rachford/ADMM for Low Complexity Regularization 
    Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel; Luke, Russell (2015) Communication / Conférence
  • Thumbnail
    Local Linear Convergence of Forward–Backward under Partial Smoothness 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2014) Communication / Conférence
  • Thumbnail
    Local Convergence Properties of Douglas–Rachford and Alternating Direction Method of Multipliers 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Local Linear Convergence of Inertial Forward-Backward Splitting for Low Complexity Regularization 
    Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel (2015) Communication / Conférence
  • Thumbnail
    Local Linear Convergence Analysis of Primal-Dual Splitting Methods 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo