A note on micro-instability for Hamiltonian systems close to integrable
Bounemoura, Abed; Kaloshin, Vadim (2016), A note on micro-instability for Hamiltonian systems close to integrable, Proceedings of the American Mathematical Society, 144, p. 1553-1560. 10.1090/proc/12796
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1412.7455v2Date
2016Journal name
Proceedings of the American Mathematical SocietyVolume
144Publisher
American Mathematical Society
Pages
1553-1560
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this note, we consider the dynamics associated to a perturbation of an integrableHamiltonian system in action-angle coordinates in any number of degrees of freedom andwe prove the following result of “micro-diffusion”: under generic assumptions onhandf,there exists an orbit of the system for which the drift of its action variables is at least oforder√ε, after a time of order√ε−1. The assumptions, which are essentially minimal, arethat there exists a resonant point forhand that the corresponding averaged perturbationis non-constant. The conclusions, although very weak when compared to usual instabilityphenomena, are also essentially optimal within this setting.Subjects / Keywords
Dynamical SystemsRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Kaloshin, Vadim (2014) Article accepté pour publication ou publié
-
Bounemoura, Abed (2016) Article accepté pour publication ou publié
-
Bounemoura, Abed (2017) Article accepté pour publication ou publié
-
Fischler, Stephane; Bounemoura, Abed (2014) Article accepté pour publication ou publié
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2017) Article accepté pour publication ou publié