Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates
Eldan, Ronen; Lehec, Joseph (2014), Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates, dans Bo'az Klartag, Emanuel Milman, Geometric Aspects of Functional Analysis. Israel Seminar (GAFA) 2011-2013, Springer : Berlin Heidelberg, p. 107-122. 10.1007/978-3-319-09477-9_9
Type
Chapitre d'ouvrageLien vers un document non conservé dans cette base
https://arxiv.org/abs/1306.3696v2Date
2014Titre de l'ouvrage
Geometric Aspects of Functional Analysis. Israel Seminar (GAFA) 2011-2013Auteurs de l’ouvrage
Bo'az Klartag, Emanuel MilmanÉditeur
Springer
Ville d’édition
Berlin Heidelberg
Paris
Isbn
978-3-319-09476-2
Pages
107-122
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Chaining techniques show that if X is an isotropic log-concave random vector in R n and Γ is a standard Gaussian vector then EX ≤ Cn 1/4 EΓ for any norm · , where C is a universal constant. Using a completely different argument we establish a similar inequality relying on the thin-shell constant σn = sup Var(|X|); X isotropic and log-concave on R n . In particular, we show that if the thin-shell conjecture σn = O(1) holds, then n 1/4 can be replaced by log(n) in the inequality. As a consequence, we obtain certain bounds for the mean-width, the dual mean-width and the isotropic constant of an isotropic convex body. In particular, we give an alternative proof of the fact that a positive answer to the thin-shell conjecture implies a positive answer to the slicing problem, up to a logarithmic factor.Mots-clés
Gaussian vector; Thin-Shell Estimates; Chaining techniquesPublications associées
Affichage des éléments liés par titre et auteur.
-
Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2017) Document de travail / Working paper
-
Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2018) Article accepté pour publication ou publié
-
Lehec, Joseph (2021) Document de travail / Working paper
-
Eldan, Ronen; Lehec, Joseph; Shenfeld, Yair (2020) Article accepté pour publication ou publié
-
Klartag, Bo'az; Lehec, Joseph (2019) Article accepté pour publication ou publié