Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems
Lehec, Joseph (2014), Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems, Bulletin canadien de mathématiques, 57, p. 585-597. http://dx.doi.org/10.4153/CMB-2013-040-x
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01100925Date
2014Journal name
Bulletin canadien de mathématiquesVolume
57Publisher
Canadian Mathematical Society
Pages
585-597
Publication identifier
Metadata
Show full item recordAbstract (EN)
We give a short proof of the Brascamp-Lieb theorem, which asserts that a certain general form of Young's convolution inequality is saturated by Gaussian functions. The argument is inspired by Borell's stochastic proof of the Prékopa-Leindler inequality and applies also to the reversed Brascamp-Lieb inequality, due to Barthe.Subjects / Keywords
Functional inequalities; Brownian motionRelated items
Showing items related by title and author.
-
Klartag, Bo'az; Lehec, Joseph (2019) Article accepté pour publication ou publié
-
Eldan, Ronen; Lehec, Joseph; Shenfeld, Yair (2020) Article accepté pour publication ou publié
-
Lehec, Joseph (2013) Article accepté pour publication ou publié
-
Caglar, Umut; Fradelizi, Matthieu; Guédon, Olivier; Lehec, Joseph; Schütt, Carsten; Werner, Elisabeth (2016) Article accepté pour publication ou publié
-
Chafaï, Djalil; Lehec, Joseph (2020) Chapitre d'ouvrage