• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Mutational equations in metric spaces

Aubin, Jean-Pierre (1993), Mutational equations in metric spaces, Set-Valued Analysis, 1, 1, p. 3-46. http://dx.doi.org/10.1007/BF01039289

Type
Article accepté pour publication ou publié
Date
1993
Journal name
Set-Valued Analysis
Volume
1
Number
1
Publisher
Springer
Pages
3-46
Publication identifier
http://dx.doi.org/10.1007/BF01039289
Metadata
Show full item record
Author(s)
Aubin, Jean-Pierre
Abstract (EN)
This paper summarizes an extension of differential calculus to a mutational calculus for maps from one metric space to another. The simple idea is to replace half-lines allowing to define difference quotients of maps and their various limits in the case of vector space by ‘transitions’ with which we can also define differential quotients of a map. Their various limits are called ‘mutations’ of a map. Many results of differential calculus and set-valued analysis, including the Inverse Function Theorem, do not really rely on the linear structure and can be adapted to the nonlinear case of metric spaces and exploited. Furthermore, the concept of differential equation can be extended tomutational equation governing the evolution in metric spaces. Basic Theorems as the Nagumo Theorem, the Cauchy-Lipschitz Theorem, the Center Manifold Theorem and the second Lyapunov Method hold true for mutational equations. This work was motivated by evolution equations of ‘tubes’ in ‘visual servoing’ on one hand, mathematical morphology on the other, when the metric spaces are ‘power spaces’. This paper begins by listing some consequences of general theorems concerning ‘mutational equations for tubes’.
Subjects / Keywords
Transitions; mutations; Nagumo; center manifold; Cauchy-Lipschitz; Lyapunov method; control; visual; mathematical morphology

Related items

Showing items related by title and author.

  • Thumbnail
    Dirichlet Problems for some Hamilton-Jacobi Equations With Inequality Constraints 
    Saint-Pierre, Patrick; Bayen, Alexandre M.; Aubin, Jean-Pierre (2008) Article accepté pour publication ou publié
  • Thumbnail
    A viability approach to Hamilton-Jacobi equations: application to concave highway traffic flux functions 
    Aubin, Jean-Pierre; Bayen, Alexandre M.; Saint-Pierre, Patrick (2005) Communication / Conférence
  • Thumbnail
    The Interval Market Model in Mathematical Finance 
    Bernhard, Pierre; Engwerda, Jacob C.; Roorda, Berend; Schumacher, J.M.; Kolokoltsov, Vassili; Saint-Pierre, Patrick; Aubin, Jean-Pierre (2013) Ouvrage
  • Thumbnail
    Guaranteed Inertia Functions in Dynamical Games 
    Aubin, Jean-Pierre; Saint-Pierre, Patrick (2006-06) Article accepté pour publication ou publié
  • Thumbnail
    Further properties of Lagrange multipliers in nonsmooth optimization 
    Aubin, Jean-Pierre (1980) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo