Multivalued strong laws of large numbers in the slice topology. Application to integrands
Hess, Christian (1994), Multivalued strong laws of large numbers in the slice topology. Application to integrands, Set-Valued Analysis, 2, 1-2, p. 183-205. http://dx.doi.org/10.1007/BF01027101
Type
Article accepté pour publication ou publiéDate
1994Journal name
Set-Valued AnalysisVolume
2Number
1-2Publisher
Springer
Pages
183-205
Publication identifier
Metadata
Show full item recordAuthor(s)
Hess, ChristianAbstract (EN)
Starting from the multivalued strong law of large numbers in the Wijsman topology recently proved by the present author, we deduce two multivalued strong laws of large numbers in the ‘slice topology’ introduced by Beer. An application to integrands via their epigraphical multifunctions is also provided.Subjects / Keywords
Multivalued strong law of large numbers; measurable multifunctions; set convergence; hyperspace topologies; normal integrandsRelated items
Showing items related by title and author.
-
Erhard, Dirk; Poisat, Julien (2023) Document de travail / Working paper
-
Cosco, Clement; Nakajima, Shuta; Nakashima, Makomoto (2022) Article accepté pour publication ou publié
-
On multivalued martingales whose values may be unbounded: martingale selectors and mosco convergence Hess, Christian (1991) Article accepté pour publication ou publié
-
Haspot, Boris; Charve, Frédéric (2012) Article accepté pour publication ou publié
-
Salwa, Fawzy (2017-03-24) Thèse