dc.contributor.author | Saint-Pierre, Patrick | |
dc.date.accessioned | 2015-01-22T09:27:39Z | |
dc.date.available | 2015-01-22T09:27:39Z | |
dc.date.issued | 1994 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/14596 | |
dc.language.iso | en | en |
dc.subject | Viability kernel | en |
dc.subject | Differential inclusions | en |
dc.subject | Numerical set-valued analysis | en |
dc.subject.ddc | 515 | en |
dc.title | Approximation of the viability kernel | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We study recursive inclusionsx n+1 ε G(x n ). For instance, such systems appear for discrete finite-difference inclusionsx n+1 εG ρ (x n) whereG ρ :=1+ρF. The discrete viability kernel ofG ρ , i.e., the largest discrete viability domain, can be an internal approximation of the viability kernel ofK underF. We study discrete and finite dynamical systems. In the Lipschitz case we get a generalization to differential inclusions of the Euler and Runge-Kutta methods. We prove first that the viability kernel ofK underF can be approached by a sequence of discrete viability kernels associated withx n+1 εГ ρ (xn) whereГ ρ (x) =x + ρF(x) + (ML/2) ρ 2ℬ. Secondly, we show that it can be approached by finite viability kernels associated withx h n+1 ε (Г ρ (x h n+1 ) +α(hℬ) ∩X h . | en |
dc.relation.isversionofjnlname | Applied Mathematics and Optimization | |
dc.relation.isversionofjnlvol | 29 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 1994 | |
dc.relation.isversionofjnlpages | 187-209 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/BF01204182 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |