Show simple item record

dc.contributor.authorAgueh, Martial
dc.contributor.authorCarlier, Guillaume
dc.contributor.authorIllner, Reinhard
dc.date.accessioned2015-01-27T08:56:45Z
dc.date.available2015-01-27T08:56:45Z
dc.date.issued2015
dc.identifier.issn1937-5093
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/14622
dc.language.isoenen
dc.subjectKinetic granular media
dc.subjectasymptotic behavior
dc.subjectentropy bounds
dc.subjectglobal in time estimates
dc.subject.ddc520en
dc.titleRemarks on a class of kinetic models of granular media: asymptotics and entropy bounds
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDepartment of Mathematics and statistics University of Vic toria;Canada
dc.description.abstractenWe obtain new a priori estimates for spatially inhomogeneous solutions of akinetic equation for granular media, as first proposed in [3]and, more recently,studied in [1]. In particular, we show that a family of convexfunctionals on thephase space is non-increasing along the flow of such equations, and we deduceconsequences on the asymptotic behaviour of solutions. Furthermore, using anadditional assumption on the interaction kernel and a “potential for interaction”,we prove a global entropy estimate in the one-dimensional case.
dc.publisher.cityParisen
dc.relation.isversionofjnlnameKinetic & Related Models
dc.relation.isversionofjnlvol8
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages201-214
dc.relation.isversionofdoi10.3934/krm.2015.8.201
dc.relation.isversionofjnlpublisherAIMS - American Institute of Mathematical Sciences
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.description.submittednonen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2018-04-13T08:32:28Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record