Generic Fast Diffusion for a Class of Non-Convex Hamiltonians with Two Degrees of Freedom
Bounemoura, Abed; Kaloshin, Vadim (2014), Generic Fast Diffusion for a Class of Non-Convex Hamiltonians with Two Degrees of Freedom, Moscow Mathematical Journal, 14, 2, p. 181-203
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/1304.3050v1Date
2014Journal name
Moscow Mathematical JournalVolume
14Number
2Publisher
AMS
Pages
181-203
Metadata
Show full item recordAbstract (EN)
In this paper, we study small perturbations of a class of non-convex integrable Hamiltonians with two degrees of freedom, and we prove a result of diffusion for an open and dense set of perturbations, with an optimal time of diffusion which grows linearly with respect to the inverse of the size of the perturbation.Subjects / Keywords
Arnold diffusion; linear diffusion; superconductivity channels; Nekhoroshev theory; convexity; resonant normal formsRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Kaloshin, Vadim (2016) Article accepté pour publication ou publié
-
Bernard, Patrick; Kaloshin, Vadim; Zhang, K. (2017) Article accepté pour publication ou publié
-
Bounemoura, Abed (2016) Article accepté pour publication ou publié
-
Bounemoura, Abed (2020) Article accepté pour publication ou publié
-
Aslani, Shahriar; Bernard, Patrick (2022) Document de travail / Working paper